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Summary
The Multiphysics Object-Oriented Simulation Environment (MOOSE) is an open-source object-
oriented finite element framework written in C++ (Lindsay et al., 2022). The Thermal
Hydraulics Module (THM) is an optional MOOSE physics module that provides capabilities for
studying thermal hydraulic systems. Its core capability lies in assembling a network of coupled
components, for instance, pipes, junctions, and valves.

THM provides several new systems to MOOSE to enable and facilitate thermal hydraulic simu-
lations, most notably the Components system, which provides a higher-level syntax to MOOSE’s
lower-level objects. This system is extensible by the user, but the current library primarily
includes components based on a one-dimensional, single-phase, variable-area, compressible
flow model, as well as heat conduction.

Statement of need
Numerous engineering applications employ fluids as media for transferring heat. Power
generation applications notably transfer heat from a source, such as a boiler, to an energy
conversion system, such as a turbine. Thermal hydraulic systems are well-suited for the task,
due to their ability to move energy efficiently over the scale of a plant. These systems vary
widely in their size and complexity and may feature a large number of coupled components.

A notable example requiring thermal hydraulic systems analysis is a nuclear reactor system.
These systems typically involve a large network of components to convert nuclear power to
electrical power and additional heat transfer components to remove the heat during accidental
transients. For example, there may be a primary flow “loop” of pipes that extract heat from
the fuel, pumps to force circulation, one or more heat exchangers exchanging heat between
this primary loop and a secondary loop, and turbomachinery components like turbines and
generators. Accurate systems analyses require models that capture the coupling between all of
these components.

A wide variety of applications have been built using the MOOSE framework. A suite of
applications supporting various domains of nuclear reactor systems analysis is under active
development at Idaho National Laboratory. THM provides a foundation for thermal hydraulic
applications in this area, including RELAP-7 (Berry et al., 2018), which models two-phase flow
in light-water reactors and coolant flow in gas-cooled reactors, and Sockeye (Hansel et al.,
2021), which models heat pipes used in nuclear microreactors.
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Core capabilities

Components system
The Components system allows users to add “components”, which are very flexible in their use,
but in general represent “pieces” of a simulation, which may be coupled together. Common
uses for components include adding meshes (one-, two-, or three-dimensional), variables,
equations, and output. Components provide a higher level syntax that hides lower level
MOOSE objects, such as Kernels and BoundaryConditions. While Actions can also be used
to create a higher-level syntax, components provide much more convenience, particularly when
multiple components interact.

Usually, components represent physical pieces in a system, such as pipes, solid bodies, or
junctions; however, they can also be abstract, for example, coupling other components together,
providing some source or boundary conditions, or just adding any other MOOSE objects in a
convenient manner.

The Components system is abstract and provides several base classes that could be utilized
by a variety of physical applications. All components share the base class Component; some
intermediate base classes are:

• Component1D: generates a one-dimensional (1D) mesh in three-dimensional (3D) space,
defined by a starting point, direction, length, and discretization.

• Component2D: generates a two-dimensional (2D) mesh in 3D space, defined by the same
axial parameters as Component1D, plus transverse direction, length, and discretization.
This may represent either a Cartesian or axisymmetric coordinate system.

• FileMeshComponent: generates a mesh read from an external file (any dimension).
• Component1DBoundary: used for applying boundary conditions to a Component1D com-

ponent.
• Component1DJunction: used for applying coupled boundary conditions between

Component1D components.

The following subsections describe some of the currently available components.

Flow components

THM has numerous components that support a 1D, variable-area, single-phase compressible
flow model (Berry et al., 2018). Components related to this flow model use the suffix 1Phase,
with the main component being the straight-channel component called FlowChannel1Phase.
Other components related to this flow model are summarized as follows:

• Boundary conditions, such as inlets and outlets (with various formulations) and walls.
• Junctions, which allow flow to occur between multiple flow channels by providing coupled

boundary conditions to each connected channel. These also include valves, which can
partially or completely close flow paths.

• Volumetric heat sources, such as heat from a provided function, a convection condition,
or a coupled heat flux.

• Volumetric form loss sources, such as those arising from flow blockages.
• Turbomachinery components, such as pumps, compressors, and turbines, which are

particular types of junctions that add source terms to the momentum and energy
equations to simulate turbomachinery.

In addition to these components, there is also FlowComponentNS, which leverages a selection
of flow formulations from MOOSE’s Navier–Stokes module (Lindsay et al., 2023), with a mesh
provided by an external file.

The fluid properties needed by these components are defined using the MOOSE Fluid Properties
module. For simulations with multiple loops with different fluids, a FluidProperties object
can be created for each fluid and used in the corresponding THM flow components.
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Heat conduction components

Thermal hydraulic systems feature not only flow components but also solid bodies that transfer
heat with the flow, such as the walls of a heat exchanger. In THM, these bodies are 2D or
3D components referred to as “heat structures,” which solve the transient heat conduction
equation:

• HeatStructurePlate: derived from Component2D and using a Cartesian coordinate
system, representing a “plate” geometry.

• HeatStructureCylindrical: derived from Component2D and using an axisymmetric
coordinate system, representing a “cylinder” or “shell” geometry.

• HeatStructureFromFile3D: derived from FileMeshComponent, representing a general
3D geometry.

In addition to the heat structure components themselves, there are components that interact
with them:

• Boundary conditions, such as Dirichlet, provided heat flux function, convection, and
radiation.

• Volumetric heat sources.
• Interface conditions, which couple heat structures to other heat structures or to flow

channels.

Closures system
The Closures system allows users to create MOOSE objects (usually Materials) that specify
closures for their component models. For example, a flow channel may require definitions
of quantities such as friction factors and heat transfer coefficients. The selection of closure
relations may depend on the application. Closure relations may be generic correlations or
custom relations, such as correlations from experimentally measured data.

While these definitions could be made inside a component, it is advantageous to have closure
definitions separately both for code-reuse purposes and to avoid duplicating objects. There may
be a large number of closure choices, each with their own user parameters. In large systems of
components, Closures objects can be reused when the closures apply to many objects.

ControlLogic system
The ControlLogic system is an extension of MOOSE’s Controls system, which is used to
control input parameters to various objects during a simulation. Unlike standard controls
objects, control logic objects may declare new control data that is not associated with input
parameters and may retrieve control data declared in other control logic objects, allowing
control operations to be chained together, which is not possible in the standard Controls

system. This is necessary to mirror real control systems in thermal hydraulic systems, which
may feature various controllers in series. Examples of controls in THM’s library include a
transient function control, a proportional-integral-derivative control, a delay control, a trip
control, and a termination control.

Integrity checking
Systems simulations can have a very large number of components, and the input for such
large models is potentially complex and error-prone, perhaps involving tens or hundreds of
input errors in a user’s first attempt. To enable a practical input file-writing workflow, it is
important that errors can be reported in batch, instead of stopping execution at the first error
encountered, which is the usual behavior in MOOSE. To address this need, THM provides a
logging capability. An application creates a single “logger” object, and then various objects
(such as components and closures objects) can log errors and warnings. Execution continues
until the application chooses to print out all of the errors and warnings, in a very palatable,
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condensed format. The user can then view and address these errors all at once, significantly
decreasing the number of input file iterations.

Documentation
THM’s documentation is extensive and follows the same structure as the code base. Each
object is accompanied by a documentation page that:

• Describes it, including its equations or a figure as relevant
• Lists its parameters along with metadata about the parameters
• Lists all the input files in the repository that use this object
• Lists all the classes deriving from this object.

Major groups of objects, usually derived from a single base class, are documented through
the syntax documentation, which describes how these objects are instantiated and used in a
simulation. For example, Components and Closures are examples of syntax unique to THM
that also correspond to base classes of groups of THM objects.

This documentation page is hosted on the module website. The website also hosts the software
quality assurance (SQA) records, such as the testing requirement matrix and failure analysis
reports.

Testing
The module relies on CIVET (Slaughter et al., 2021) for continuous integration. Every pull
request to the module runs the entire test suite for MOOSE, including the tests for THM. The
test suite is comprehensive and aims to cover every feature available in the module. It consists
of unit and regression tests, described in this section. The entire test suite is run with a wide
variety of configurations, from compiling with the oldest and newest supported compilers, to
running with several shared memory threads and distributed memory processes, on a variety of
operating systems. The code is also checked for memory leaks using Valgrind (Nethercote &
Seward, 2007).

Unit tests in THM are targeted at specific routines that can be accessed by creating the
relevant object with example parameters. For example, in a Flux object, we can check that
the formulation of the numerical flux is both consistent and symmetric.

Regression tests are typically created for every object to ensure that their behavior does not
vary on a relevant test case. For example, a Function object can be tested on a simple mesh
to ensure the field it produces is consistent. Components are often tested in the minimal
configuration sufficient to satisfy the test requirement, for example, to prove conservation of
mass and energy on a flow channel.

In addition to the automated testing provided by CIVET, proposed changes to the module are
reviewed by at least one member of the MOOSE change control board, as detailed in MOOSE’s
SQA plan (Slaughter et al., 2021), in addition to any other interested reviewers. Reviewers
determine if the proposed changes have an acceptable design, follow coding standards, and are
sufficiently tested.

Demonstration
THM can be used as a foundation for other MOOSE-based applications or as a stand-alone
software to model a variety of systems, including nuclear systems, power conversion cycles, and
geothermal piping networks. The flexibility of THM is demonstrated with a two-loop system
that is typical of a nuclear reactor system. This model is the final step of the single-phase flow
THM tutorial available on the THM website.
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Figure 1: System diagram (left) and temperature distribution (right)

The system is shown in Figure 1. Helium circulates in the primary loop (displayed in light gray
color) and extracts heat from a rod (core_hs). Heat is transferred to liquid water in a secondary
system (displayed in light blue color) through a heat exchanger (hx/*). The cold helium then
enters a pump, before flowing into the heated section again. Each part of the system shown in
Figure 1 is defined using the appropriate Component object. The ControlLogic system is used
to set the pump head to match a target mass flow rate in the primary loop. The secondary
side is a flow channel with water. This example features two sets of Closures objects. The
first set is of type Closures1PhaseTHM and uses classic engineering correlations for the heat
transfer coefficient and friction factor; the second set is of type Closures1PhaseNone, used
to define custom relations for the various closures for the primary side of the heat exchanger.
THM can then calculate quantities of interest, such as pressure, temperature, and mass flow
rate.

Conclusions
THM provides a flexible framework for performing thermal hydraulic systems simulations within
the MOOSE framework, with many useful capabilities that extend beyond the field of thermal
hydraulics. The Components system provides an ideal structure for setting up large systems
of connected components in MOOSE, significantly reducing the user input burden, since
the higher level components syntax hides the multitude of lower level MOOSE objects. The
ControlLogic system extends the usability of MOOSE’s Controls system, allowing control
units to be chained together.

The development of the module is driven by user application needs. Future work to THM
may include improvement of existing components, as well as additional components related to
single-phase flow and heat conduction. Depending on future needs, additional flow models may
be added as well. Further abstraction of the way the discretization of an equation is created
on a component is underway, and should allow for the definition of a general multiphysics
component, able to instantiate any equation discretized in MOOSE.
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External contributions to the module are encouraged, and support will be provided to comply
with MOOSE’s SQA standard.
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