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Summary
The Temperature Dependent Effective Potential (TDEP) method is a versatile and efficient
approach to include temperature in ab initio materials simulations based on phonon theory.
TDEP can be used to describe thermodynamic properties in classical and quantum ensembles,
and several response properties ranging from thermal transport to Neutron and Raman
spectroscopy. A stable and fast reference implementation is given in the software package of
the same name described here. The underlying theoretical framework and foundation is briefly
sketched with an emphasis on discerning the conceptual difference between bare and effective
phonon theory, in both self-consistent and non-self-consistent formulations. References to
numerous applications and more in-depth discussions of the theory are given.

Introduction
The properties of materials change both qualitatively and quantitatively with temperature, i.e.,
the macroscopic manifestation of the microscopic vibrational motion of electrons and nuclei.
In thermal equilibrium, temperature influences the structural phase, the density, and many
mechanical properties. Out of thermal equilibrium, for instance, when applying a thermal
gradient or an external spectroscopic probe such as a light or neutron beam, temperature
influences the response of the material to the perturbation, for example its ability to conduct
heat, or the lineshape of the spectroscopic signal. Temperature is therefore at the core of both
applied and fundamental materials science.

In ab initio materials modeling, the contribution of electronic temperature is straightforward to
include through appropriate occupation of the electronic states, whereas the nuclear contribution
needs to be accounted for explicitly. This can be done by performing molecular dynamics
(MD) simulations which aim at numerically reproducing the thermal nuclear motion in an
atomistic simulation, and obtaining temperature-dependent observables either in equilibrium,
through averaging, or out of equilibrium from time-dependent correlation functions or by
directly observing the relaxation dynamics.

An alternative strategy is to construct approximate model Hamiltonians for the nuclear subsys-
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tem, which enables an analytic description of the nuclear motion by leveraging perturbation
theory starting from an exactly solvable lowest-order model. In this approach, the starting
point is given in terms of phonons which are eigensolutions of a Hamiltonian of harmonic form,
i.e., quadratic in the nuclear displacements. Anharmonic contributions can be included via
established perturbative techniques, in practice up to quartic terms. Higher-order contribu-
tions are elusive because the complexity and number of terms in the perturbative expansion
grows very quickly with system size and perturbation order. The lattice-dynamics approach
is therefore not formally exact. However, the phonon picture is useful for describing a wide
range of materials properties in practice, and often reaches excellent accuracy in comparison to
experiment while providing precise microscopic insight into the underlying physical phenomena.

The chemical bonding in the lattice dynamics Hamiltonian is represented through force constants.
These can be obtained in a purely perturbative, temperature-independent way by constructing
a Taylor expansion of the interatomic potential energy about the periodically-arranged atom
positions in the crystal. This idea is more than a century old and traces back to Born and von
Karman (Born & von Karman, 1912). Alternatively, temperature-dependent, effective model
Hamiltonians are used in situations where the quadratic term in a bare Taylor expansion is not
positive definite, i.e., the average atomic position does not coincide with a minimum of the
potential. The classic example is the 4He problem, in which a Taylor expansion led to imaginary
phonon frequencies in the dense solid phase (de Boer, 1948). Born and coworkers solved this
problem in the 1950’s by developing a self-consistent phonon theory in which an effective,
positive-definite Hamiltonian yielding well-defined phonons is obtained self-consistently using a
variational principle (Born et al., 1951; Hooton, 2010a, 2010b). An excellent historical review
of this development is given in (Klein & Horton, 1972).

While the theoretical foundation of (self-consistent) phonon theory has been well-established for
decades, more recent developments are concerned with implementing this theory in computer
simulations, typically based on density functional theory (DFT) (Hohenberg & Kohn, 1964; Kohn
& Sham, 1965). This has led to a variety of approaches that tackle the self-consistent phonon
problem for anharmonic and dynamically stabilized systems (Errea et al., 2013; Monacelli et al.,
2021; Roekeghem et al., 2021; Souvatzis et al., 2008; Tadano & Tsuneyuki, 2015). Another
development was the non-self-consistent construction of effective Hamiltonians by optimizing
the force constants to the fully anharmonic dynamics observed during MD simulations (Dove &
Lynden-Bell, 1986; Levy et al., 1984). This idea was extended in the TDEP method to describe
phonons in systems like Zirconium in the high-temperature body-centered cubic (bcc) phase,
which is dynamically unstable at low temperatures (Hellman et al., 2011, 2013). While the
initial TDEP method was based on ab initio MD, a self-consistent extension was later proposed
in the form of stochastic TDEP (sTDEP), where thermal samples are created from the model
Hamiltonian itself and the force constants are optimized iteratively until self-consistency is
achieved (Benshalom et al., 2022; Shulumba et al., 2017a). sTDEP furthermore allows to
include nuclear quantum effects in materials with light elements in a straightforward way
(Laniel et al., 2022; Shulumba et al., 2017b).

Effective phonons capture anharmonic frequency renormalization, but they are still non-
interacting quasiparticles with infinite lifetime, or equivalently infinitesimal linewidth. The
effect of linewidth broadening due to anharmonic phonon-phonon interactions can be included
by using higher-order force constants up to third or fourth order (Cowley, 1963; Feng & Ruan,
2016; Hellman & Abrikosov, 2013). These can be used to get better approximations to the free
energy (Wallace, 1972), describe thermal transport (Broido et al., 2007; Dangić et al., 2021;
Klarbring et al., 2020; Reig et al., 2022; Romero et al., 2015), and linewidth broadening in
spectroscopic experiments (Benshalom et al., 2022; Kim et al., 2018; Romero et al., 2015). In
practice, it was noted that the renormalized phonon quasiparticles interact more weakly than
bare phonons. This means that the effective approach remains applicable in systems with strong
anharmonicity where the bare phonon quasiparticle picture becomes invalid (Ravichandran &
Broido, 2018). A formal justification in terms of mode-coupling theory, as well as a detailed
comparison between bare perturbation theory with force constants from a Taylor expansion,
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self-consistent effective, and non-self-consistent effective approaches was recently given by
some of us in (Castellano et al., 2023). Explicitly incorporating dielectric response properties
for light-scattering experiments such as infrared and Raman was recently proposed (Benshalom
et al., 2022).

Statement of need
The TDEP open-source code is the reference implementation for the TDEP method introduced
above. It delivers a clean and fast Fortran implementation with Message Passing Interface
(MPI) parallelism both for constructing and solving effective lattice-dynamics Hamiltonians.
This allows for materials simulations of simple elemental solids up to complex compounds with
reduced symmetry under realistic conditions.

To extract force constants from thermal snapshots efficiently, TDEP employs the permutation
and spacegroup symmetries of a given system to reduce the free parameters in the model to
an irreducible set before fitting them (Esfarjani & Stokes, 2008). For example, this reduces
the number of harmonic force constants of a 4x4x4 supercell of a bcc lattice (128 atoms)
from 147456 to only 11 unknowns. This can speed up the convergence by several orders of
magnitude when comparing to a post hoc symmetrization of the force constants (Hellman
et al., 2013). Further lattice dynamics sum rules are enforced after fitting, i.e., acoustic
(translational) and rotational invariances, as well as the Huang invariances, which ensure the
correct number of independent elastic constants in the long-wavelength limit (Born & Huang,
1954). While TDEP was one of the first numerical approaches exploiting all these constraints
in a general way for arbitrary systems, other codes have adopted this practice by now (Eriksson
et al., 2019; Lin et al., 2022).

Another distinctive feature of TDEP is the use of plain input and output files which are
code-agnostic and easy to create and parse. These are either plain-text formats, established
human-readable formats like CSV, or self-documented HDF5 files for larger datasets. Thanks to
the exploitation of the force constant symmetries, the respective output files are very compact,
even for anharmonic force constants.

Additionally, TDEP provides tools to prepare and organize ab initio supercell simulations,
e.g., analyzing the crystal symmetry, finding good simulation (super)cells, visualizing the pair
distribution functions from MD simulations, and creating thermal snapshots for accelerated
and self-consistent sampling. Each program is fully documented with background information,
and an extensive set of realistic research workflow tutorials is available as well. A list of the
most important available features and respective programs is given below.

Features
Here we list the most important codes that are shipped with the TDEP package, explain their
purpose, and list the respective references in the literature. A more detailed explanation of all
features can be found in the online documentation.

• generate_structure: Generate supercells of target size, with options to make them as
cubic as possible to maximize the real-space cutoff for the force constants (Hellman et
al., 2011).

• canonical_configuration: Create supercells with thermal displacements from an initial
guess or existing force constants, using Monte Carlo sampling from a classical or quantum
canonical distribution (Shulumba et al., 2017a; West & Estreicher, 2006). Self-consistent
sampling with sTDEP is explained in detail in (Benshalom et al., 2022).

• extract_forceconstants: Obtain (effective) harmonic force constants from a set of
supercell snapshots with displaced positions and forces (Hellman et al., 2013). Option-
ally, fit higher-order force constants (Hellman & Abrikosov, 2013), or dielectric tensor
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properties (Benshalom et al., 2022).

• phonon_dispersion_relations: Calculate phonon dispersion relations and related har-
monic thermodynamic properties from the second-order force constants (Hellman et
al., 2013), including Grüneisen parameters from third-order force constants (Hellman &
Abrikosov, 2013).

• thermal_conductivity: Compute thermal transport by solving the phonon Boltzmann
transport equation with perturbative treatment of third-order anharmonicity (Broido et
al., 2007; Romero et al., 2015).

• lineshape: Compute phonon spectral functions including lifetime broadening and shifts
for single q-points, q-point meshes, or q-point paths in the Brillouin zone (Romero et
al., 2015; Shulumba et al., 2017a). The grid mode computes spectral thermal transport
properties (Dangić et al., 2021).

A separate python library for interfacing with different DFT and force field codes through the
Atomic Simulation Environment (ASE) (Larsen et al., 2017), as well as processing and further
analysis of TDEP output files is available as well (Knoop, 2023).

We note that parts of the TDEP method have been implemented in other code packages as
well (Bottin et al., 2020).
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