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Summary
simChef is an R package that empowers data science practitioners to rapidly plan, carry out,
and summarize statistical simulation studies in a flexible, efficient, and low-code manner.
Drawing substantially from the Predictability, Computability, and Stability (PCS) framework
(Yu & Kumbier, 2020), simChef emphasizes the scientific best practices encompassed by
PCS by removing many of the administrative burdens of simulation design through: (1) an
intuitive tidy grammar of data science simulations; (2) powerful abstractions for distributed
simulation processing backed by future (Bengtsson, 2021); and (3) automated generation
of interactive R Markdown simulation documentation, situating results next to the workflows
needed to reproduce them. Taken together, simChef’s capabilities overcome many of the design,
computational, and reproducibility hurdles inherent in nearly every data science simulation
study.

Statement of need
Data science simulation studies occupy an important role in scientific research as a means
to gain insight into new and existing statistical methods. Simulations serve as statistical
sandboxes that open a path toward otherwise inaccessible discoveries. For example, they can
be used to establish comprehensive benchmarks of existing procedures for a common task;
to demonstrate the strengths and weaknesses of novel methodology applied to synthetic and
real-world data; or to probe the validity of a theoretical analysis.

Creating high-quality simulation studies typically involves a number of repetitive and error-
prone coding tasks: implementing data-generating processes (DGPs) and statistical methods;
sampling from these DGPs; parallelizing computation of simulation replicates; summarizing
metrics; visualizing, documenting, presenting, and saving results; and so on. While this
administrative overhead is necessary, it is not sufficient for scientific understanding. Data
scientists must navigate a number of important judgment calls such as the choice of DGPs,
baseline statistical methods, associated parameters, and evaluation metrics for scientific
relevancy.

While the scientific context may vary drastically from one study to the next, the simulation
scaffolding remains largely similar. Yet simulation code repositories often lack reusability, both
for novel settings and when new questions arise in the original context. simChef addresses the
need for an intuitive, extensible, and reusable framework for data science simulations, allowing
data science practitioners to focus their energies on scientific questions by reducing the burdens
of parameterization, parallelization, and documentation.
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Core abstractions of data science simulations
At its core, simChef breaks down a simulation experiment into four modular components
(Figure 1), each implemented as an R6 class (Chang, 2022):

• DGP: the data-generating processes from which to generate data
• Method: the methods (or models) to fit in the experiment
• Evaluator: the evaluation metrics used to evaluate the methods’ performance
• Visualizer: the visualization functions used to visualize outputs from the method fits

or evaluation results (can be tables, plots, or even R Markdown snippets to display)

Figure 1: Overview of the four core components in a simChef Experiment. simChef provides four
classes that implement distinct simulation objects in an intuitive and modular manner: DGP, Method,
Evaluator, and Visualizer. Using these classes, users can easily build a simChef Experiment using
reusable, customizable functions (i.e., dgp_fun, method_fun, eval_fun, and viz_fun). Optional named
parameters can be set in these custom functions via the ... arguments in the create_*() methods.

Using these classes, users can create or reuse custom functions (i.e., dgp_fun, method_fun,
eval_fun, and viz_fun in Figure 1) aligned with their scientific goals. The custom functions
then can be parameterized and encapsulated in one of the corresponding classes via a create_*

method, together with optional named parameters (see Figure 1).

A fifth R6 class, Experiment, unites the four components above and serves as a concrete
implementation of the user’s intent to answer a specific scientific question. Specifically, the
Experiment stores references to the DGP(s), Method(s), Evaluator(s), and Visualizer(s) along
with the DGP and Method parameters that should be varied and combined during the simulation
run.
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Figure 2: Overview of running a simChef Experiment. The Experiment class handles relationships
among the four classes portrayed in Figure 1. Experiments may have multiple DGPs and Methods, which are
combined across the Cartesian product of their varying parameters (represented by \*). Once computed,
each Evaluator and Visualizer takes in the fitted simulation replicates, while Visualizer additionally
receives evaluation summaries.

A powerful grammar of data science simulations
Inspired by the tidyverse (Wickham et al., 2019), simChef develops an intuitive grammar for
running simulation studies using the aforementioned R6 classes. We provide an illustrative
example usage next.

library(simChef)

dgp1 <- create_dgp(dgp_fun1, "my_dgp1", sd = 0.5)

dgp2 <- create_dgp(dgp_fun2, "my_dgp2")

method <- create_method(method_fun, "my_method")

eval <- create_evaluator(eval_fun)

viz <- create_vizualizer(viz_fun)

exper <- create_experiment(dgp_list = list(dgp1, dgp2)) %>%

add_method(method) %>%

add_vary_across(

list(dgp1, dgp2),

n = c(1e2, 1e3, 1e4)

) %>%

add_vary_across(

dgp2,

sparse = c(FALSE, TRUE)

) %>%

add_vary_across(

method,

scalar_valued_param = c(0.1, 1.0, 10.0),

vector_valued_param = list(c(1, 2, 3), c(4, 5, 6)),

list_valued_param = list(list(a1=1, a2=2, a3=3),

list(b1=3, b2=2, b3=1))

) %>%

add_evaluator(eval) %>%

add_viz(viz)

future::plan(multicore, workers = 64)
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results <- exper %>%

run_experiment(n_reps = 100, save = TRUE)

new_method <- create_method(new_method_fun, 'my_new_method')

exper <- exper %>%

add_method(new_method)

results <- exper %>%

run_experiment(n_reps = 100, use_cached = TRUE)

init_docs(exper)

render_docs(exper)

In the example usage, DGP(s), Method(s), Evaluator(s), and Visualizer(s) are first created
via create_*(). These simulation objects can then be combined into an Experiment using
either create_experiment() and/or add_*().

In an Experiment, DGP(s) and Method(s) can also be varied across one or multiple parameters
via add_vary_across(). For instance, in the example Experiment, there are two DGP instances,
both of which are varied across three values of n and one of which is additionally varied across
two values of sparse. This effectively results in nine distinct configurations for data generation
(i.e., 3 variations on dgp1 + 3x2 variations on dgp2). For the single Method in the experiment,
we use three values of scalar_valued_param, two of vector_valued_param, and another two
of list_valued_param, giving 12 distinct configurations. Hence, there are a total of 9x12 =
108 DGP-method-parameter combinations in the Experiment.

Thus far, we have simply instantiated an Experiment object (akin to creating a recipe for an
experiment). To compute and run the simulation experiment, we next call run_experiment
with the desired number of replicates. As summarized in Figure 2, running the experiment will
(1) fit each Method on each DGP (and for each of the varying parameter configurations), (2)
evaluate the experiment according to the given Evaluator(s), and (3) visualize the experiment
according to the given Visualizer(s). Furthermore, the number of replicates per combination
of DGP, Method, and parameters specified via add_vary_across is determined by the n_reps

argument to run_experiment. Because replication happens at the per-combination level,
the effective total number of replicates in the Experiment depends on the number of DGPs,
methods, and varied parameters. In the given example, there are 108 DGP-method-parameter
combinations, each of which is replicated 100 times. To reduce the computational burden,
the Experiment class flexibly handles the computation of simulation replicates in parallel
using the future package (Bengtsson, 2021). Figure 3 provides a detailed schematic of the
run_experiment workflow, along with the expected inputs to and outputs from user-defined
functions.

Duncan et al. (2024). simChef: High-quality data science simulations in R. Journal of Open Source Software, 9(95), 6156. https://doi.org/10.
21105/joss.06156.

4

https://doi.org/10.21105/joss.06156
https://doi.org/10.21105/joss.06156


Figure 3: Detailed schematic of the run_experiment workflow using simChef. Expected inputs to and
outputs from user-defined functions are also provided.

Additional Features
In addition to the ease of parallelization, simChef enables caching of results to further alleviate
the computational burden. Here, users can choose to save the experiment’s results to disk by
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passing save = TRUE to run_experiment. Once saved, the user can add new DGP and Method

objects to the experiment and compute additional replicates without re-computing existing
results via the use_cached option. Considering the example above, when we add new_method

and call run_experiment with use_cached = TRUE, simChef finds that the cached results are
missing combinations of new_method, existing DGPs, and their associated parameters, giving
nine new configurations. Replicates for the new combinations are then appended to the cached
results.

simChef also provides users with a convenient API to automatically generate an R Markdown
document. This documentation gathers the scientific details, summary tables, and visualizations
side-by-side with the user’s custom source code and parameters for data-generating processes,
statistical methods, evaluation metrics, and plots. A call to init_docs generates empty
markdown files for the user to populate with their overarching simulation objectives and with
descriptions of each of the DGP, Method, Evaluator, and Visualizer objects included in the
Experiment. Finally, a call to render_docs prepares the R Markdown document, either for
iterative design and analysis of the simulation or to provide a high-quality overview that can
be shared easily. We provide an example of the simulation documentation here. Corresponding
R source code is available on GitHub.

Related R packages
A number of existing R packages and projects address needs related to simChef’s functionality.
At a higher level of abstraction, the batchtools package (Lang et al., 2017) includes concepts
for “problems”, “algorithms”, and “experiments”, similar to simChef’s DGP, Method, and
Experiment objects, respectively, but less tailored to the specific needs of data science simulation
experiments. Additionally, batchtools provides a number of utilities for shared-memory and
distributed memory computations, including for interacting with high-performance computing
cluster schedulers such as Slurm and Torque. simChef is able to leverage these utilities for
distributed computations via the backends provided by the future.batchtools package which
is part of the future ecosystem of R packages (Bengtsson, 2021). Whereas batchtools

is a general tool for distributed mapping operations, simChef specializes in data science
simulations and provides additional functionality tailored to that setting including its tidy

grammar of simulation experiments, the Evaluator and Visualizer concepts, and automated
documentation capabilities discussed above.

Like simChef, many existing packages specifically aim to simplify the process of creating
simulation experiments by reducing coding burden through helpful abstractions, distributed
computing helpers, and preset methods for generating, computing, and summarizing simulation
replicates. Of particular note are the following:

• SimDesign (Chalmers, 2020) focuses on Monte Carlo simulation experiments and provides
a function runSimulation that accepts user-defined generate, analyse, and summarise

functions, with support for distributed computation via the parallel base R package
and future.

• simulator (Bien, 2016) provides a tidy grammar of simulation experiments and highly
modular helpers for evaluating and managing simulation outputs, relying on the parallel

package for distributed computation.
• simpr (Brown, 2023) defines a tidy simulation framework for generating data, fitting

models, varying parameters, and aggregating simulation results with user-defined and
purr-style functions. In addition, it support distributed computations backed by the
future framework.

• SimEngine (Kenny & Wolock, 2024) defines and executes simulation ‘levels’ (parameters
to vary) and ‘scripts’ (functions to execute a single simulation replicate). It manages the
definition and execution of simulations and calculates summary statistics, with support
for distributed computations in coordination with high-performance computing cluster
schedulers.

Duncan et al. (2024). simChef: High-quality data science simulations in R. Journal of Open Source Software, 9(95), 6156. https://doi.org/10.
21105/joss.06156.

6

https://philboileau.github.io/simChef-case-study/results/empirical-fdr-comparison/empirical-fdr-comparison.html
https://github.com/PhilBoileau/simChef-case-study
https://doi.org/10.21105/joss.06156
https://doi.org/10.21105/joss.06156


A third category of related packages are those that share conceptual similarities simChef in
terms of providing helpful abstractions for the design and analysis of simulation experiments,
but at a finer level of detail than simChef intends. For example, the package DeclareDesign

(Blair et al., 2019) provides various declare_* functions for defining and evaluating statistical
research questions, with an emphasis on the social sciences. The package infer (Couch et
al., 2021) provides a tidy API for statistical inference, providing the ability to specify random
variables and their relationships, define a null hypothesis, generate data under that hypothesis,
and calculate distributions of statistics based on that hypothesis. Both of these packages
and many of the packages below could be employed in a user’s DGP, Method, Evaluator,
or Visualizer and deployed via an Experiment to carry out a large-scale simulation with
automated documentation in harmony with simChef.

Finally, many packages provide a small number of well-tailored helper functions for specific
data-generating processes and simulation settings, with or without distributed computation.
In no particular order these include: simitation (Shilane et al., 2023), simhelpers (Joshi &
Pustejovsky, 2024), simTool (Scheer, 2020), parSim (Epskamp, 2023), rsimsum (Gasparini,
2018), simsalapar (Hofert & Mächler, 2016), tidyMC (Linner et al., 2022), MonteCarloSEM
(Orcan, 2021), simMetric (Parsons, 2022), and simmer (Ucar et al., 2019). To our knowl-
edge, no single existing package includes simChef’s combination of conceptual modularity,
tidy grammar, computational flexibility, simulation workflow management, and automated
documentation.

Discussion
While simChef’s core functionality focuses on computability (C) – encompassing efficient usage
of computational resources, ease of user interaction, reproducibility, and documentation – we
emphasize the importance of predictability (P) and stability (S) in data science simulations
(see (Elliott et al., 2024) for an in-depth discussion). The principal goal of simChef is to
provide a tool for data scientists to create simulations that incorporate predictability (through
fit to real-world data) and stability (through sufficient exploration of uncertainty) in their
simulations. In future work, we intend to provide tools that can be flexibly tailored to a user’s
particular scientific needs and further these goals through automated predictability and stability
summaries and documentation.
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