
TrackSegNet: a tool for trajectory segmentation into
diffusive states using supervised deep learning
Hélène Kabbech 1 and Ihor Smal 1

1 Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
DOI: 10.21105/joss.06157

Software
• Review
• Repository
• Archive

Editor: Kevin M. Moerman
Reviewers:

• @imagejan
• @ajasja

Submitted: 03 May 2023
Published: 04 June 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
TrackSegNet is a command-line python program, which permits the classification and seg-
mentation of trajectories into diffusive states. A deep neural network is trained for each
particular case using synthetic data and trajectory features as inputs. After classification on the
experimental data using the trained network, the trajectories are segmented and grouped per
diffusive state. TrackSegNet further estimates the motion parameters (the diffusion constant
𝐷 and anomalous exponent 𝛼) for each segmented track using the mean squared displacement
(MSD) analysis, and computes additional geometric measurements per tracklet state such
as the angular distribution and velocity autocorrelation curve. The resulting segmentation
and motion parameters are stored as CSV files. Originally developed for the quantification of
protein dynamics using single-particle tracking imaging, its use can be extended to any type of
trajectory dataset.

Figure 1: Analysis pipeline of TrackSegNet described in two steps.

Statement of need
Recent advances in the field of microscopy allow the capture, at nanometer resolution, of
the motion of fluorescently-labeled particles in live cells such as proteins or chromatin loci.
Therefore, the development of methods to characterize the dynamics of a group of particles has
become more than necessary (Muñoz-Gil et al., 2021). A typical analysis is the classification
and segmentation of trajectories into diverse diffusive states when multiple types of motion
are present in a dataset (e.g., confined, superdiffusive) due to the properties of the labeled
molecule (e.g., protein bound/unbound to the DNA).

Several trajectory classification methods have recently been developed by the community
exhibiting a diverse range of methodologies. For instance, Wagner et al. (2017) utilizes
Random Forests, Hansen et al. (2018) relies on histogram of displacements, Pinholt et
al. (2021) employs hidden Markov model (HMM) and Kabbech & Smal (2022) utilizes an
unsupervised denoising technique. However, not all methods have readily available tools
for direct application. Consequently, there is a growing need for the development of more
user-friendly software tailored for practical implementation.
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Method
This software is based on the method of Arts et al. (2019) with major improvements, making
use of a stack of LSTM layers trained on synthetic trajectory features. The improvements
include the calculation of angles as a feature to better distinguish the trajectory confinement,
better management of trajectory gaps, and the use of the mean squared displacement (MSD)
instead of the moment scaling spectrum (MSS) analysis to better estimate the dynamics. This
version includes a user-friendly software allowing the replicability for other datasets.

Neural Network
Tracking particles from 2-dimensional images results in a set 𝒮 of trajectories 𝑟𝑖 ∈ 𝒮, 𝑖 =
{1,… , 𝑃}, where 𝑃 is the total number of trajectories, and 𝑟𝑖(𝑡) = (𝑥𝑖(𝑡), 𝑦𝑖(𝑡)) are the 2D
coordinates of the particle 𝑖 at time 𝑡.

The network is built using functions from the Keras library, and is composed of a bidirectional
long short-term memory (LSTM) layer (having 200 hidden units), followed by a fully connected
time-distributed layer with a SoftMax activation function. The inputs of the network are of six
trajectory features previously computed, while the outputs are probabilities for each trajectory
point of belonging to one of the 𝑁 diffusive states, the predicted state is defined by the highest
probability.

The computed features along a given trajectory are: the displacements Δ𝑥𝛿=1 and Δ𝑦𝛿=1
at the first discrete time interval 𝛿 = 1 (with Δ𝑟𝛿(𝑡) = 𝑟(𝑡) − 𝑟(𝑡 + 𝛿)), the distances
𝑑𝛿=1 (with 𝑑𝛿(𝑡) = √Δ𝑥𝛿(𝑡)2 +Δ𝑦𝛿(𝑡)2), the mean of displacements 𝑑𝛿=1,𝑝=1 and 𝑑𝛿=2,𝑝=1
(with 𝑑𝛿,𝑝(𝑡) = 1

2𝑝+1 ∑
𝑡+𝑝
𝑘=𝑡−𝑝 𝑑𝛿(𝑘) with 𝑝 ≥ 1) and the angles 𝜃𝛿=1 between consecutive

displacements. The last feature is an addition to the initial method, used for a better distinction
of the trajectory confinement. The first and last trajectory points of each trajectory vector are
discarded due to missing computed feature(s).

Training
The network is trained using synthetic fractional Brownian motion (fBm) trajectories exhibiting
mixed diffusive states. For this purpose, 10,000 fBm trajectories with a switching mode
between states and a total length of 27 frames are generated for each independent training.
The fBm process is characterized using the fBm kernel (Lundahl et al., 1986) defined as
𝑘FBM(𝑡) = 𝐷 [ |𝑡 + 1|𝛼 − 2|𝑡|𝛼 + |𝑡 − 1|𝛼], with 𝑡 = Δ𝑡/𝛿 (Δ𝑡 the time measured between
two frames) and the pre-defined motion parameters 𝑚 = (𝐷,𝛼).

The model is optimized using Adam during the training and a categorical cross-entropy loss
function.

Model parameters
The main parameters of the training are tunable from the params.csv file to create a new
variant of the model:

• num_states is an important parameter permitting to decide the number 𝑁 of diffusive
states. This number can vary from 2 to 6 states, but it is recommended to choose 2 to
4 states.

• state_i_diff and state_i_alpha the approximate motion parameters 𝑚 for each of
the 𝑁 diffusive state. The diffusion constant 𝐷 is dimensionless, and the anomalous
exponent value 𝛼 is ranging from 0 to 2 (]0-1[: subdiffusion, 1: Brownian motion, ]1-2[:
superdiffusion).

• pt_i_j the probability of transitioning from the state i to the state j. The total number
of probabilities should be 𝑁2.
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The remaining parameters are related to the experimental dataset:

• data_path, the path of the dataset of trajectories to segment.
• track_format, the format of the files containing the trajectory coordinates, either in

MDF (see MTrackJ data file format) or CSV
• time_frame, the time interval between two trajectory points in seconds.
• pixel_size, the dimension of a pixel in 𝜇𝑚.

Classification and MSD analysis
Before computing the features for each experimental trajectory, gaps in trajectories of length
1 are filled by a randomly generated point; while the larger gaps are split in two separate
trajectories. Each point is therefore classified as one of the 𝑁 diffusive states using the trained
LSTM model. Based on the state classification, the trajectories are segmented and the motion
parameters are estimated for each segmented track (longer than 5 frames) using the MSD
analysis. The latter consists of applying a least-square fit from the logarithm form of the MSD
power-law equation (Metzler et al., 2014). Both 𝐷 and 𝛼 distributions can be plotted in a
scatterplot as shown in Figure 1. The new probability transition matrix and proportion of
tracklet points in each diffusive state are also calculated.

In brief, the outputs of this software permit the segmentation of trajectories into shorter
segments based on their type of diffusion. Measurements are then performed (MSD analysis,
angles and distributions) to evaluate the dynamics for each state group/segment.
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