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Summary
Stemflow is a user-friendly Python package for Adaptive Spatio-Temporal Exploratory Model
(AdaSTEM (Fink et al., 2013)). AdaSTEM is a modeling framework that adopts “split-
apply-combine” methodology (Wickham, 2011) – it adaptively splits data into spatiotemporal
grids, train models for each grid, and combines the models for ensemble prediction. Models in
stemflow follow the style of scikit-learn BaseEstimator class (Pedregosa et al., 2011). It provides
one-line model creation, fitting, prediction, and evaluation. It implements spatio-temporal
train-test-split and cross-validation functions. After model training, feature importance could
be evaluated with spatio-temporal dynamics. Stemflow also provides functions for visualizing
ensembles structured in model training and generating GIF file for predicted results to animate
the spatio-temporal movement of animal population.

Statement of need
Spatio-temporal big data is an increasingly valuable resource for modern ecological studies
(Farley et al., 2018). A large amount of spatio-temporal big data is now derived from broad-
scale surveys, such as citizen science projects (Dickinson et al., 2010). The intensity of survey
activities grows rapidly as more people are involved in citizen science in recent years, resulted
in exponential accumulation of observational data (Di Cecco et al., 2021; Sullivan et al., 2014).
However, daily species observation records uploaded by non-professionals in citizen science
program are known to have larger bias than professionally structured research, both in terms
of data veracity and spatio-temporal balance of the datasets, which necessitates elaborate
modeling methods to provide insights (Dickinson et al., 2010; Farley et al., 2018).

Some species distribution modeling (SDM) approaches were brought forward to adjust for bias
in citizen science and model on the unobserved components (Bird et al., 2014). Still, many
failed to account for the autocorrelation of space and time (F. Dormann et al., 2007), which
is especially crucial in modeling inherently spatio-temporal biological events with variations
at different scales (Chave, 2013; Levin, 1992), such as seasonal migration. Adaptive Spatio-
Temporal Exploratory Model (AdaSTEM) is a semi-parameterized machine learning model that
leverages the spatio-temporal adjacency information of sample points to model occurrence or
abundance of species (Fink et al., 2013). A QuadTree algorithm (Samet, 1984) is implemented
to split data into smaller spatio-temporal grids (called stixels) conditional on the data abundance,
with more abundant data allowing stixels to be divided into finer resolution (up to a maximum).
Stixels with sample size less than a certain threshold will not be modeled; instead, these stixels
will be labeled as unpredictable. This procedure controls the degree of model extrapolation
(known as “long-distance prediction” problem in spatial settings) and reduces overfitting. A
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base model is trained for each stixel, that is, targets are only modeled on their adjacent
information in space and time. Splitting-training is carried out several times to generate
multiple ensembles. Finally, prediction results were aggregated across these ensembles.

AdaSTEM shows the capacity of supporting large scale spatio-temporal ecological data modeling
in many studies (Fink et al., 2020; Fuentes et al., 2023; La Sorte et al., 2022), especially for
modeling animal abundance at different scales (Fink et al., 2013). One well-known application
of AdaSTEM is the weekly abundance map of eBird Status and Trend product (Fink et al.,
2022), which was widely used as data sources of abundance data of bird populations (Bird
et al., 2014; Jarzyna & Stagge, 2023; Lin et al., 2022). The application of AdaSTEM could
be extended to other fields with similar data structure and spatio-temporal dependence, for
example, epidemiology. Despite the foreseeable significant role of spatio-temporal big data in
the coming decades of scientific research, the development of tools has not necessarily kept
pace.

Stemflow is positioned as a user-friendly Python package to meet the need of general application
of modeling spatio-temporal large datasets. Scikit-learn style object-oriented modeling pipeline
enables concise model construction with compact parameterization at the user end, while the
rest of the modeling procedures are carried out under the hood. Once the fitting method is
called, the model class recursively splits the input training data into smaller spatio-temporal
stixels using QuadTree algorithm. For each of the stixels, a base model is trained only using
data falls into that stixel. Stixels are then aggregated and constitute an ensemble. In the
prediction phase, stemflow queries stixels for the input data according to their spatial and
temporal index, followed by corresponding base model prediction. Finally, prediction results
are aggregated across ensembles to generate robust estimations (see Fink et al. (2013) and
stemflow documentation for details).

For survey projects that include abundance information like eBird (Sullivan et al., 2014),
the targeted modeling values are often zero-inflated, owning to the fact of low observation
probability in many species. Zero-inflation could lead to poor regression model performance
(Campbell, 2021). In stemflow, we implement hurdle model classes that embed two sequential
models: a classifier to classify the absence and presence states, followed by a regressor to
model the abundance for prediction samples classified as presence. Hurdle model classes can
be conjunctively used with AdaSTEM model classes in two ways: Use hurdle model as the
base model for AdaSTEMRegressor (as in Johnston et al. (2015)), or use AdaSTEMClassifier
and AdaSTEMRegressor as the classifier and regressor in hurdle model. We demonstrate the
comparison of these two architectures in stemflow documentation.

One advantage of applying stemflow in scikit-learn style is that there is a variety of “base
models” to choose from scikit-learn or scikit-learn-style repertoire. The choices vary from
linear models to boosting and bagging tree-based models. Maxent model (C. B. Anderson,
2023) is also supported to play the role of “base model”, which largely expands the potential
application for presence-only modeling (see documentation).

While there exists many open source packages for species distribution modeling (mostly in
R, (Norberg et al., 2019); and currently one in Python (C. B. Anderson, 2023)), most of
them solely leverage environmental variables and do not support integration of spatio-temporal
information during model construction (but see C. B. Anderson (2023); S. C. Anderson et al.
(2022); Dobson et al. (2023)). This disadvantage is usually noted along with the overconfidence
of the model extrapolation capacity both for Maxent-based and ensemble-based models (A.
Lee‐Yaw et al., 2022). To our knowledge, stemflow is the first SDM package specifically
crafted to address spatio-temporal dependencies in samples while also accounting for biases
in sample distribution. With the rapid accumulation of data and development of machine
learning techniques, stemflow will exhibit greater advantages in spatio-temporal modeling, and
could be applied to other fields (e.g., epidemiology and weather prediction) in future.
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