
pylattica: a package for prototyping lattice models in
chemistry and materials science
Max C. Gallant 1,2 and Kristin A. Persson 1,2

1 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States
of America 2 Department of Materials Science and Engineering, University of California, Berkeley,
California, United States of America

DOI: 10.21105/joss.06170

Software
• Review
• Repository
• Archive

Editor: Richard Gowers
Reviewers:

• @riesben
• @amkrajewski

Submitted: 14 November 2023
Published: 25 May 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
pylattica provides a simple and flexible framework for prototyping lattice-based simulations
such as atomistic Monte Carlo simulations or cellular automata. It is differentiated from other
lattice simulation packages by i) its agnosticism toward the form of the update rule, simulation
structure, neighborhood structure, and simulation state and ii) its interoperability with the
pymatgen package which allows modeling of arbitrary crystalline systems (i.e. not only two
or three dimensional square grids), and makes it particularly well suited to applications in
materials science and chemistry.

Statement of need
Cellular automata (Bays, 2010), lattice-gas automata (Boghosian, 1999), and atomistic Monte
Carlo models (Andersen et al., 2019) are all simulations in which a system, represented by an
arrangement of connected sites, evolves over time according to an update rule which determines
the future state of a site by considering its current state and the state of each of its neighbors.
For example, in the classic “Game of Life” cellular automaton (Gardner, 1970), sites in a 2D
square grid switch between “dead” and “alive” during each timestep based on the number of
living neighbors surrounding them. In lattice Monte Carlo simulations for vacancy diffusion in
crystalline solid materials, atoms move between neighboring sites at rates partially determined
by the occupancy of their neighbors (Haley et al., 2006).

These simulation classes have been implemented many times in various programming languages
for a range of applications (Andersen et al., 2019; Raabe, 2002). However, these implementa-
tions typically focus on tuning an existing simulation form within a relatively narrow range
of focus. For instance, CellPyLib (L. Antunes, 2023), netomaton (L. M. Antunes, 2019),
and cellular_automaton (Feistenauer, 2021) are all libraries for simulating cellular automata,
but they each are limited in the simulation geometry, the data type for the simulation state,
the geometry of the neighborhood, or the strategy for applying the update rule. Similarly,
lattice_mc (Morgan, 2017) is an excellent Monte Carlo program that focuses solely on
diffusion in ionic solids. While KMCLib (Leetmaa & Skorodumova, 2014) is a more generic
alternative, it is still (appropriately) limited in the form of the state and the update rule.

The goal of pylattica is to synthesize the essential elements of these valuable simulation
classes into a flexible and user-friendly framework for developing lattice models that do not
fit neatly into the target use case of one of the existing packages. It accomplishes this by
providing implementations of common lattice model features (e.g. various neighborhoods,
methods for applying evolution rules, simulation structures, and analysis tools) while remaining
unopinionated with regard to the ways these pieces are used in new models. It is implemented
in python to maximize accessibility and interoperability with other scientific software tools, in

Gallant, & Persson. (2024). pylattica: a package for prototyping lattice models in chemistry and materials science. Journal of Open Source
Software, 9(97), 6170. https://doi.org/10.21105/joss.06170.

1

https://orcid.org/0009-0008-4099-6144
https://orcid.org/0000-0003-2495-5509
https://doi.org/10.21105/joss.06170
https://github.com/openjournals/joss-reviews/issues/6170
https://github.com/mcgalcode/pylattica
https://doi.org/10.5281/zenodo.10815119
https://orcid.org/0000-0002-3241-1846
https://github.com/riesben
https://github.com/amkrajewski
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06170


particular, pymatgen, a package containing utilities for analysis in materials science (Ong et
al., 2013).

Because pylattica is focused on enabling fast iteration on simulation features during develop-
ment, it prioritizes flexibility and application agnosticism over performance. Therefore, it is
better suited for cases in which the developer needs to prototype and experiment with various
forms of their simulation as opposed to honing in a hardened production model.

Package Overview

Simulation representation
In lattice models, a system is represented by a network of connected sites, frequently a two
or three dimensional square grid, with some state value assigned to each site. In pylattica,
this representation is accomplished by the combination of three entities, which separate the
dominant concerns (illustrated schematically in Figure 1):

• A Structure, which enumerates the sites and their physical locations with no limitations
on periodicity or dimensionality

• A SimulationState, which acts as an index of sites and stores the state of each site as
an arbitrary key-value mapping

• A Neighborhood, which encodes the connectedness of the sites

Of these three entities, only a SimulationState is required to run a simulation. The user can
freely utilize Structures and Neighborhoods as required by their use case in the preparation
or evolution of the system.

Figure 1: Schematic showing an example state, a structure labeled with site IDs, and a possible
neighborhood for site 13 in a simulation with a two dimensional grid structure.

Constructing Neighborhoods
pylattica supports two and three dimensional square grid simulation structures out of the box
(though any simulation structure can be created), and provides convenience methods for building
them. Additionally, it provides a number of NeighborhoodBuilder classes which encode meth-
ods for specifying site neighbors in Structures. The two most flexible NeighborhoodBuilder

classes are the DistanceNeighborhoodBuilder and the MotifNeighborhoodBuilder. Using
the DistanceNeighborhoodBuilder, the neighbors of a site are defined as all other sites falling
within a particular cutoff distance. Using the MotifNeighborhoodBuilder, the locations of a
site’s neighbors are specified by providing a list of offset vectors from that site (one for each
neighbor). While these two classes can be used to construct practically any neighborhood,
builder classes for the following common neighborhoods are also provided:

• Moore (square grid) (Packard & Wolfram, 1985)
• Von Neumann (square grid) (Packard & Wolfram, 1985)

Gallant, & Persson. (2024). pylattica: a package for prototyping lattice models in chemistry and materials science. Journal of Open Source
Software, 9(97), 6170. https://doi.org/10.21105/joss.06170.

2

https://doi.org/10.21105/joss.06170


• Pseudopentagonal (square grid) (Sieradzki & Madej, 2013)
• Pseudohexagonal (square grid) (Sieradzki & Madej, 2013)
• Annular (arbitrary structure)

Simulation Execution
Running a simulation entails applying an “update rule” to sites in the simulation. pylattica

only requires that the update rule accept a site identifier and the current simulation state as
input and provide a collection of intended state changes as output. This rule is implemented
by the user in the get_state_update method on a Controller class. In most cases, a
Neighborhood object will be used to consider the state of neighboring sites when calculating
the intended changes, though this is not required. The flexibility provided by this arrangement
makes it straightforward to iterate on the definition of the rule while developing a simulation.

The simulation is evolved by providing the Controller and a desired number of steps to an
instance of the Runner class. The Runner passes sites to the Controller, and keeps track of
updates as they are returned and accumulated over the course of the simulation. Two modes
of evolution are supported by pylattica (Fatès, 2013):

• Synchronous - at each simulation step, the rule is applied to every site
• Asynchronous - at each simulation step, the rule is applied to a single random site

The result of a simulation run is an instance of SimulationResult, which stores the state
at every step in the simulation as a list of SimulationStates. It can be easily serialized for
storage on a filesystem or a document store, like MongoDB.

Overview

Figure 2: Diagram showing relationships between pylattica entities.

Figure 2 shows the relationship between the entities discussed so far, and how they are connected
in producing a SimulationResult. To summarize, a Lattice is used to create a Structure,
which is paired with an initial SimulationState to create a Simulation, or the starting point
for simulation execution. The Structure is also fed to a NeighborhoodBuilder to construct
a Neighborhood object, which is used in the update rule implemented by the Controller to
determine how the simulation evolves. Finally, the Simulation and Controller are passed to

Gallant, & Persson. (2024). pylattica: a package for prototyping lattice models in chemistry and materials science. Journal of Open Source
Software, 9(97), 6170. https://doi.org/10.21105/joss.06170.

3

https://doi.org/10.21105/joss.06170


a Runner, which applies the update rule repeatedly, producing a series of SimulationStates,
which are concatenated to form a SimulationResult.

Visualization and Analysis

Figure 3: Example visualizations of two and three dimensional square grid simulation states.

pylattica provides basic utilities for analyzing the state of the simulation. These tools
provide functionality for filtering and counting sites in a SimulationState by arbitrary criteria
(implemented as a function of the site’s state). Further specialized support is provided for
simulation states in which the state of each site is a single discrete label (as is the case in
traditional cellular automata).

In the case of simulations with two- and three-dimensional square grid structures, pylattica
provides visualization tools which convert SimulationStates into PNG images (as shown in
Figure 3) and SimulationResults into animated GIFs.

Crystal Structure Support and pymatgen
pylattica was developed with simulations of crystalline materials in mind. As a result, it
supports simulation Structures defined with periodic boundaries and lattices with arbitrarily
shaped unit cells. These Structures are supported by a Lattice class which was cloned
from pymatgen and then adapted to the needs of pylattica, primarily because pymatgen’s
implementation is hard-coded to use 3-dimensions, while pylattica strives for generality and
enforces no such constraint. In service of developing simulations of real crystalline materials,
pylattica also provides utility functions for defining neighborhoods in periodic space based
on displacement motifs (e.g. octahedral or tetrahedral neighbors) and supports converting
pymatgen.Structure objects to pylattica Structures. This feature is intended to enable
more seamless integration with existing materials science workflows.

Acknowledgments
This work was primarily funded and intellectually led by the Materials Project, which is funded
by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division, under Contract no. DE-AC02-05-CH11231: Materials
Project program KC23MP. It also received support from the U.S. Department of Energy, Office
of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division,
under Contract No. DE-AC02-05CH11231 within the Data Science for Data-Driven Synthesis

Gallant, & Persson. (2024). pylattica: a package for prototyping lattice models in chemistry and materials science. Journal of Open Source
Software, 9(97), 6170. https://doi.org/10.21105/joss.06170.

4

https://doi.org/10.21105/joss.06170


Science grant (KCD2S2). MCG acknowledges Matthew J. McDermott and Bryant Li for useful
discussions during the development of this work.

References
Andersen, M., Panosetti, C., & Reuter, K. (2019). A Practical Guide to Surface Kinetic Monte

Carlo Simulations. Frontiers in Chemistry, 7. https://doi.org/10.3389/fchem.2019.00202

Antunes, L. (2023). CellPyLib. https://github.com/lantunes/cellpylib

Antunes, L. M. (2019). Netomaton: A Python Library for working with Network Automata.
Zenodo. https://doi.org/10.5281/ZENODO.3893141

Bays, C. (2010). Introduction to Cellular Automata and Conway’s Game of Life. In A.
Adamatzky (Ed.), Game of Life Cellular Automata (pp. 1–7). Springer. https://doi.org/
10.1007/978-1-84996-217-9_1

Boghosian, B. M. (1999). Lattice gases and cellular automata. Future Generation Computer
Systems, 16(2), 171–185. https://doi.org/10.1016/S0167-739X(99)00045-X

Fatès, N. (2013). A Guided Tour of Asynchronous Cellular Automata. In J. Kari, M. Kutrib,
& A. Malcher (Eds.), Cellular Automata and Discrete Complex Systems (pp. 15–30).
Springer. https://doi.org/10.1007/978-3-642-40867-0_2

Feistenauer, R. (2021). Cellular_automaton. In GitLab. https://gitlab.com/DamKoVosh/
cellular_automaton

Gardner, M. (1970). Mathematical Games. Scientific American, 223(4), 120–123. https:
//www.jstor.org/stable/24927642

Haley, B. P., Beardmore, K. M., & Grønbech-Jensen, N. (2006). Vacancy clustering and
diffusion in silicon: Kinetic lattice Monte Carlo simulations. Physical Review B, 74(4),
045217. https://doi.org/10.1103/PhysRevB.74.045217

Leetmaa, M., & Skorodumova, N. V. (2014). KMCLib: A general framework for lattice kinetic
Monte Carlo (KMC) simulations. Computer Physics Communications, 185(9), 2340–2349.
https://doi.org/10.1016/j.cpc.2014.04.017

Morgan, B. J. (2017). Lattice_mc: A python lattice-gas monte carlo module. Journal of Open
Source Software, 2(13), 247. https://doi.org/10.21105/joss.00247

Ong, S. P., Richards, W. D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier,
V. L., Persson, K. A., & Ceder, G. (2013). Python Materials Genomics (pymatgen): A
robust, open-source python library for materials analysis. Computational Materials Science,
68, 314–319. https://doi.org/10.1016/j.commatsci.2012.10.028

Packard, N. H., & Wolfram, S. (1985). Two-dimensional cellular automata. Journal of
Statistical Physics, 38(5), 901–946. https://doi.org/10.1007/BF01010423

Raabe, D. (2002). Cellular Automata in Materials Science with Particular Reference to
Recrystallization Simulation. Annual Review of Materials Research, 32(1), 53–76. https:
//doi.org/10.1146/annurev.matsci.32.090601.152855

Sieradzki, L., & Madej, L. (2013). A perceptive comparison of the cellular automata and
Monte Carlo techniques in application to static recrystallization modeling in polycrystalline
materials. Computational Materials Science, 67, 156–173. https://doi.org/10.1016/j.
commatsci.2012.08.047

Gallant, & Persson. (2024). pylattica: a package for prototyping lattice models in chemistry and materials science. Journal of Open Source
Software, 9(97), 6170. https://doi.org/10.21105/joss.06170.

5

https://doi.org/10.3389/fchem.2019.00202
https://github.com/lantunes/cellpylib
https://doi.org/10.5281/ZENODO.3893141
https://doi.org/10.1007/978-1-84996-217-9_1
https://doi.org/10.1007/978-1-84996-217-9_1
https://doi.org/10.1016/S0167-739X(99)00045-X
https://doi.org/10.1007/978-3-642-40867-0_2
https://gitlab.com/DamKoVosh/cellular_automaton
https://gitlab.com/DamKoVosh/cellular_automaton
https://www.jstor.org/stable/24927642
https://www.jstor.org/stable/24927642
https://doi.org/10.1103/PhysRevB.74.045217
https://doi.org/10.1016/j.cpc.2014.04.017
https://doi.org/10.21105/joss.00247
https://doi.org/10.1016/j.commatsci.2012.10.028
https://doi.org/10.1007/BF01010423
https://doi.org/10.1146/annurev.matsci.32.090601.152855
https://doi.org/10.1146/annurev.matsci.32.090601.152855
https://doi.org/10.1016/j.commatsci.2012.08.047
https://doi.org/10.1016/j.commatsci.2012.08.047
https://doi.org/10.21105/joss.06170

	Summary
	Statement of need
	Package Overview
	Simulation representation
	Constructing Neighborhoods
	Simulation Execution
	Overview
	Visualization and Analysis
	Crystal Structure Support and pymatgen

	Acknowledgments
	References

