
ΦML: Intuitive Scientific Computing with Dimension
Types for Jax, PyTorch, TensorFlow & NumPy
Philipp Holl 1 and Nils Thuerey 1

1 School of Computation, Information and Technology, Technical University of Munich, Germany
DOI: 10.21105/joss.06171

Software
• Review
• Repository
• Archive

Editor: Marcel Stimberg
Reviewers:

• @wandeln
• @chaoming0625
• @gauravbokil8

Submitted: 11 August 2023
Published: 01 March 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
ΦML is a math and neural network library designed for science applications. It enables users to
quickly evaluate many network architectures on their data sets, perform (sparse) linear and
non-linear optimization, and write differentiable simulations that scale to n dimensions. ΦML
is compatible with Jax, PyTorch, TensorFlow and NumPy, and user code can be executed on
all of these backends. The project is hosted at https://github.com/tum-pbs/PhiML under the
MIT license.

Statement of need
Machine learning (ML) has become an essential tool for scientific research. In recent years,
ML has been used to make significant advances in a wide range of scientific fields, including
chemistry (Butler et al., 2018), materials science (Wei et al., 2019), weather and climate
prediction (Bochenek & Ustrnul, 2022; Rolnick et al., 2022), computational fluid dynamics
(Brunton et al., 2020), drug discovery (Jumper et al., 2021; Vamathevan et al., 2019),
astrophysics (De La Calleja & Fuentes, 2004; Ntampaka et al., 2015; Petroff et al., 2020),
geology (Rodriguez-Galiano et al., 2015), and many more. The use of ML for scientific
applications is still in its early stages, but it has the potential to revolutionize the way that
science is done. ML can help researchers to make new discoveries and insights that were
previously impossible.

The availability of domain knowledge sets science applications apart from other ML fields like
computer vision or language modelling. Domain knowledge often allows for explicit modelling
of known dynamics by simulating them with handwritten algorithms, which has been shown to
improve results when training ML models (Raissi et al., 2019; Um et al., 2020). Implementing
differentiable simulations into ML frameworks requires different functions and concepts than
classical ML tasks. The major differences are:

• Data typically represent objects or signals that exist in space and time. Data dimensions
are interpretable, e.g. vector components, time series, n-dimensional lattices.

• Information transfer is usually local, resulting in sparsity in the dependency matrix
between objects (particles, elements or cells).

• A high numerical accuracy is desirable for some operations, often requiring 64-bit and
32-bit floating point calculations.

However, current machine learning frameworks have been designed for the core ML tasks which
reflects in their priorities and design choices. This can result in overly verbose code when
implementing scientific applications and may require implementing custom operators, since
many common functions like sparse-sparse matrix multiplication, periodic padding or sparse
linear solvers are not available in all libraries.

Holl, & Thuerey. (2024). ΦML: Intuitive Scientific Computing with Dimension Types for Jax, PyTorch, TensorFlow & NumPy. Journal of Open
Source Software, 9(95), 6171. https://doi.org/10.21105/joss.06171.

1

https://orcid.org/0000-0001-9246-5195
https://orcid.org/0000-0001-6647-8910
https://doi.org/10.21105/joss.06171
https://github.com/openjournals/joss-reviews/issues/6171
https://github.com/tum-pbs/PhiML
https://doi.org/10.6084/m9.figshare.25282300
https://marcel.stimberg.info/
https://orcid.org/0000-0002-2648-4790
https://github.com/wandeln
https://github.com/chaoming0625
https://github.com/gauravbokil8
https://creativecommons.org/licenses/by/4.0/
https://github.com/tum-pbs/PhiML
https://doi.org/10.21105/joss.06171


ΦML is a scientific computing library based on Python 3 (Van Rossum & Drake, 2009) targeting
scientific applications that use machine learning methods. Its main goals are:

• Reusability. Code based on ΦML should be able to run in many settings without
modification. It should be agnostic towards the dimensionality of simulated systems and
the employed discretization. All code should be trivially vectorizable.

• Compatibility. Users should be free to choose whatever ML or third-party library they
desire without modifying their simulation code. ΦML should support Linux, Windows
and Mac.

• Usability. ΦML should be easy to learn and use, matching existing APIs where possible.
It should encourage users to write concise and expressive code.

• Maintainability. All high-level source code of ΦML should be easy to understand.
Continuous testing should be used to ensure that future updates do not break existing
code.

• Performance. ΦML should be able to make use of hardware accelerators, such as GPUs
and TPUs, where possible. During development, we prioritize rapid code iterations over
execution speed but the completed code should run as fast as if written directly against
the chosen ML library.

In the following, we explain the architecture and major features that help ΦFlow reach these
goals. ΦML consists of a high-level NumPy-like API geared towards writing easy-to-read and
scalable simulation code, as well as a neural network API designed to allow users to quickly
iterate over many network architectures and hyperparameter settings. Similar to eagerpy
(Rauber et al., 2020), ΦML integrates with Jax (Bradbury et al., 2018), PyTorch (Paszke et
al., 2019), TensorFlow (Abadi et al., 2016) and NumPy (Harris et al., 2020) and provides a
custom Tensor class. However, ΦML adds additional functionality.

• Dimension names. Tensor dimensions are always referenced by their user-defined name,
not their index. We support the syntax tensor.dim for operations like indexing or
unstacking to make using dimension names as simple as possible.

• Automatic reshaping. ΦML automatically transposes tensors and inserts singleton
dimensions to match arguments. Consequently, user code is agnostic to the dimension
order by default.

• Element names. Slices or items along dimensions can be named as well, e.g. allowing
users to specify that a dimension lists the values (x,y,z) or (r,g,b). These names can
be used in slicing, gathering and scattering operations.

• Dimension types. Tensor dimensions are grouped into five different types: batch, spatial,
instance, channel, and dual. This allows tensor-related functions to automatically select
dimensions to operate on, without requiring the user to specify individual dimensions.

• Non-uniform tensors. Stacking tensors with different dimension sizes yields non-uniform
tensors. ΦML keeps track of the resulting shape, allowing users to operate on non-uniform
tensors the same way as uniform ones.

• Floating-point precision by context. All tensor operations determine the desired floating
point precision from the operation context, not the data types of its inputs. This is
much simpler and more predictable than the systems used by other libraries.

• Lazy stacking. New memory is only allocated once stacked data is required as a block.
Consequently, functions can unstack the components, operate on them individually, and
restack them, without worrying about unnecessary memory allocations.

• Sparse matrices from linear functions. ΦML can transform linear functions into their cor-
responding sparse matrix representation. This makes solving linear systems of equations
more performant and enables computation of preconditioners.

• Compute device from Inputs. Tensor operations execute on the device on which the
tensors reside. This prevents unintentional copies and transfers, as users have to explicitly
declare them.

• Custom CUDA Operatorions. ΦML provides custom CUDA kernels for specific operations
that could bottleneck simulations, such as grid sampling for TensorFlow or linear solves.

Holl, & Thuerey. (2024). ΦML: Intuitive Scientific Computing with Dimension Types for Jax, PyTorch, TensorFlow & NumPy. Journal of Open
Source Software, 9(95), 6171. https://doi.org/10.21105/joss.06171.

2

https://doi.org/10.21105/joss.06171


Research Projects
ΦML has been in development since 2019 as part of the PhiFlow (ΦFlow) project where
it originated as a unified API for TensorFlow and NumPy, used to run differentiable fluid
simulations. ΦFlow includes geometry, physics, and visualization modules, all of which use the
math API of ΦML to benefit from its reusability, compatibility, and performance.

It was first used to show that differentiable PDE simulations can be used to train neural
networks that steer the dynamics towards desired outcomes (Holl et al., 2019). Differentiable
PDEs, implemented against ΦML’s API, were later shown to benefit learning corrections for
low-resolution or incomplete physics models (Um et al., 2020). These findings were summarized
and formalized in Thuerey et al. (2022), along with many additional examples.

The library was also used in network optimization publications, such as showing that inverted
simulations can be used to train networks (Holl et al., 2022) and that gradient inversion
benefits learning the solutions to inverse problems (Schnell et al., 2021).

Simulations powered by ΦML have since been used in open data sets (Gupta & Brandstetter,
2022; Takamoto et al., 2022) and in publications from various research groups (Brandstetter
et al., 2021, 2023; Li et al., 2023; Parekh et al., 1993; Ramos et al., 2022; Sengar et al., 2021;
Wandel et al., 2020, 2021; P. Wang, 2023; R. Wang et al., 2022a, 2022b; Wu et al., 2022).

Acknowledgements
We would like to thank Robin Greif, Kartik Bali, Elias Djossou and Brener Ramos for their
contributions, as well as everyone who contributed to the project on GitHub.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,

Irving, G., Isard, M., & others. (2016). Tensorflow: A system for large-scale machine
learning. 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), 265–283.

Bochenek, B., & Ustrnul, Z. (2022). Machine learning in weather prediction and climate
analyses—applications and perspectives. Atmosphere, 13(2), 180. https://doi.org/10.
3390/atmos13020180

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., & Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs (Version 0.2.5). http://github.com/google/
jax

Brandstetter, J., Berg, R. van den, Welling, M., & Gupta, J. K. (2023). Clifford neural layers
for PDE modeling. arXiv. https://arxiv.org/abs/2209.04934

Brandstetter, J., Worrall, D. E., & Welling, M. (2021). Message passing neural PDE solvers.
International Conference on Learning Representations.

Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid
mechanics. Annual Review of Fluid Mechanics, 52, 477–508. https://doi.org/10.1146/
annurev-fluid-010719-060214

Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O., & Walsh, A. (2018). Machine learning
for molecular and materials science. Nature, 559(7715), 547–555. https://doi.org/10.
1038/s41586-018-0337-2

Holl, & Thuerey. (2024). ΦML: Intuitive Scientific Computing with Dimension Types for Jax, PyTorch, TensorFlow & NumPy. Journal of Open
Source Software, 9(95), 6171. https://doi.org/10.21105/joss.06171.

3

https://github.com/tum-pbs/PhiFlow
https://doi.org/10.3390/atmos13020180
https://doi.org/10.3390/atmos13020180
http://github.com/google/jax
http://github.com/google/jax
https://arxiv.org/abs/2209.04934
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.21105/joss.06171


De La Calleja, J., & Fuentes, O. (2004). Machine learning and image analysis for morphological
galaxy classification. Monthly Notices of the Royal Astronomical Society, 349(1), 87–93.
https://doi.org/10.1111/j.1365-2966.2004.07442.x

Gupta, J. K., & Brandstetter, J. (2022). Towards multi-spatiotemporal-scale generalized PDE
modeling. arXiv. https://arxiv.org/abs/2209.15616

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Holl, P., Koltun, V., & Thuerey, N. (2022). Scale-invariant learning by physics inversion.
Advances in Neural Information Processing Systems, 35, 5390–5403.

Holl, P., Thuerey, N., & Koltun, V. (2019). Learning to control PDEs with differentiable
physics. International Conference on Learning Representations.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
K., Bates, R., Žıd́ek, A., Potapenko, A., & others. (2021). Highly accurate protein
structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.
1038/s41586-021-03819-2

Li, Z., Patil, S., Shu, D., & Farimani, A. B. (2023). Latent neural PDE solver for time-
dependent systems. NeurIPS 2023 AI for Science Workshop.

Ntampaka, M., Trac, H., Sutherland, D. J., Battaglia, N., Póczos, B., & Schneider, J. (2015).
A machine learning approach for dynamical mass measurements of galaxy clusters. The
Astrophysical Journal, 803(2), 50. https://doi.org/10.1088/0004-637X/803/2/50

Parekh, N., Zou, A., Jungling, I., Endlich, K., Sadowski, J., & Steinhausen, M. (1993). Sex
differences in control of renal outer medullary circulation in rats: Role of prostaglandins.
American Journal of Physiology-Renal Physiology, 264(4), F629–F636. https://doi.org/10.
1152/ajprenal.1993.264.4.F629

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
Z., Gimelshein, N., Antiga, L., & others. (2019). Pytorch: An imperative style, high-
performance deep learning library. Advances in Neural Information Processing Systems,
32.

Petroff, M. A., Addison, G. E., Bennett, C. L., & Weiland, J. L. (2020). Full-sky cosmic
microwave background foreground cleaning using machine learning. The Astrophysical
Journal, 903(2), 104. https://doi.org/10.3847/1538-4357/abb9a7

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational Physics, 378, 686–707. https:
//doi.org/10.1016/j.jcp.2018.10.045

Ramos, B., Trost, F., & Thuerey, N. (2022). Control of two-way coupled fluid systems with
differentiable solvers. ICLR 2022 Workshop on Generalizable Policy Learning in Physical
World. https://doi.org/10.48550/arXiv.2206.00342

Rauber, J., Bethge, M., & Brendel, W. (2020). EagerPy: Writing code that works natively
with PyTorch, TensorFlow, JAX, and NumPy. arXiv. https://arxiv.org/abs/2008.04175

Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015).
Machine learning predictive models for mineral prospectivity: An evaluation of neural
networks, random forest, regression trees and support vector machines. Ore Geology
Reviews, 71, 804–818. https://doi.org/10.1016/j.oregeorev.2015.01.001

Holl, & Thuerey. (2024). ΦML: Intuitive Scientific Computing with Dimension Types for Jax, PyTorch, TensorFlow & NumPy. Journal of Open
Source Software, 9(95), 6171. https://doi.org/10.21105/joss.06171.

4

https://doi.org/10.1111/j.1365-2966.2004.07442.x
https://arxiv.org/abs/2209.15616
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1088/0004-637X/803/2/50
https://doi.org/10.1152/ajprenal.1993.264.4.F629
https://doi.org/10.1152/ajprenal.1993.264.4.F629
https://doi.org/10.3847/1538-4357/abb9a7
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.48550/arXiv.2206.00342
https://arxiv.org/abs/2008.04175
https://doi.org/10.1016/j.oregeorev.2015.01.001
https://doi.org/10.21105/joss.06171


Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross, A.
S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., & others. (2022). Tackling
climate change with machine learning. ACM Computing Surveys (CSUR), 55(2), 1–96.

Schnell, P., Holl, P., & Thuerey, N. (2021). Half-inverse gradients for physical deep learning.
International Conference on Learning Representations.

Sengar, V., Seemakurthy, K., Gubbi, J., & P, B. (2021). Multi-task learning based approach
for surgical video desmoking. Proceedings of the Twelfth Indian Conference on Computer
Vision, Graphics and Image Processing, 1–9. https://doi.org/10.1145/3490035.3490283

Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D., Alesiani, F., Pflüger, D., & Niepert,
M. (2022). PDEBench: An extensive benchmark for scientific machine learning. Advances
in Neural Information Processing Systems, 35, 1596–1611.

Thuerey, N., Holl, P., Mueller, M., Schnell, P., Trost, F., & Um, K. (2022). Physics-based
deep learning. arXiv. https://arxiv.org/abs/2109.05237

Um, K., Brand, R., Fei, Y. R., Holl, P., & Thuerey, N. (2020). Solver-in-the-loop: Learning
from differentiable physics to interact with iterative PDE-solvers. Advances in Neural
Information Processing Systems, 33, 6111–6122.

Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi,
A., Shah, P., Spitzer, M., & others. (2019). Applications of machine learning in drug
discovery and development. Nature Reviews Drug Discovery, 18(6), 463–477. https:
//doi.org/10.1038/s41573-019-0024-5

Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. CreateSpace.
ISBN: 1441412697

Wandel, N., Weinmann, M., & Klein, R. (2020). Learning incompressible fluid dynamics from
scratch-towards fast, differentiable fluid models that generalize. International Conference
on Learning Representations.

Wandel, N., Weinmann, M., & Klein, R. (2021). Teaching the incompressible Navier–Stokes
equations to fast neural surrogate models in three dimensions. Physics of Fluids, 33(4).
https://doi.org/10.1063/5.0047428

Wang, P. (2023). The applications of generative adversarial network in surgical videos. Third
International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI
2022), 12509, 300–305. https://doi.org/10.1117/12.2656026

Wang, R., Walters, R., & Yu, R. (2022a). Approximately equivariant networks for imperfectly
symmetric dynamics. International Conference on Machine Learning, 23078–23091.

Wang, R., Walters, R., & Yu, R. (2022b). Meta-learning dynamics forecasting using task
inference. Advances in Neural Information Processing Systems, 35, 21640–21653.

Wei, J., Chu, X., Sun, X.-Y., Xu, K., Deng, H.-X., Chen, J., Wei, Z., & Lei, M. (2019). Machine
learning in materials science. InfoMat, 1(3), 338–358. https://doi.org/10.1002/inf2.12028

Wu, T., Maruyama, T., & Leskovec, J. (2022). Learning to accelerate partial differential
equations via latent global evolution. Advances in Neural Information Processing Systems,
35, 2240–2253.

Holl, & Thuerey. (2024). ΦML: Intuitive Scientific Computing with Dimension Types for Jax, PyTorch, TensorFlow & NumPy. Journal of Open
Source Software, 9(95), 6171. https://doi.org/10.21105/joss.06171.

5

https://doi.org/10.1145/3490035.3490283
https://arxiv.org/abs/2109.05237
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1063/5.0047428
https://doi.org/10.1117/12.2656026
https://doi.org/10.1002/inf2.12028
https://doi.org/10.21105/joss.06171

	Summary
	Statement of need
	Research Projects
	Acknowledgements
	References

