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Summary
ΦML is a math and neural network library designed for science applications. It enables users to
quickly evaluate many network architectures on their data sets, perform (sparse) linear and
non-linear optimization, and write differentiable simulations that scale to n dimensions. ΦML
is compatible with Jax, PyTorch, TensorFlow and NumPy, and user code can be executed on
all of these backends. The project is hosted at https://github.com/tum-pbs/PhiML under the
MIT license.

Statement of need
Machine learning (ML) has become an essential tool for scientific research. In recent years,
ML has been used to make significant advances in a wide range of scientific fields, including
chemistry (Butler et al., 2018), materials science (Wei et al., 2019), weather and climate
prediction (Bochenek & Ustrnul, 2022; Rolnick et al., 2022), computational fluid dynamics
(Brunton et al., 2020), drug discovery (Jumper et al., 2021; Vamathevan et al., 2019),
astrophysics (De La Calleja & Fuentes, 2004; Ntampaka et al., 2015; Petroff et al., 2020),
geology (Rodriguez-Galiano et al., 2015), and many more. The use of ML for scientific
applications is still in its early stages, but it has the potential to revolutionize the way that
science is done. ML can help researchers to make new discoveries and insights that were
previously impossible.

The availability of domain knowledge sets science applications apart from other ML fields like
computer vision or language modelling. Domain knowledge often allows for explicit modelling
of known dynamics by simulating them with handwritten algorithms, which has been shown to
improve results when training ML models (Raissi et al., 2019; Um et al., 2020). Implementing
differentiable simulations into ML frameworks requires different functions and concepts than
classical ML tasks. The major differences are:

• Data typically represent objects or signals that exist in space and time. Data dimensions
are interpretable, e.g. vector components, time series, n-dimensional lattices.

• Information transfer is usually local, resulting in sparsity in the dependency matrix
between objects (particles, elements or cells).

• A high numerical accuracy is desirable for some operations, often requiring 64-bit and
32-bit floating point calculations.

However, current machine learning frameworks have been designed for the core ML tasks which
reflects in their priorities and design choices. This can result in overly verbose code when
implementing scientific applications and may require implementing custom operators, since
many common functions like sparse-sparse matrix multiplication, periodic padding or sparse
linear solvers are not available in all libraries.
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ΦML is a scientific computing library based on Python 3 (Van Rossum & Drake, 2009) targeting
scientific applications that use machine learning methods. Its main goals are:

• Reusability. Code based on ΦML should be able to run in many settings without
modification. It should be agnostic towards the dimensionality of simulated systems and
the employed discretization. All code should be trivially vectorizable.

• Compatibility. Users should be free to choose whatever ML or third-party library they
desire without modifying their simulation code. ΦML should support Linux, Windows
and Mac.

• Usability. ΦML should be easy to learn and use, matching existing APIs where possible.
It should encourage users to write concise and expressive code.

• Maintainability. All high-level source code of ΦML should be easy to understand.
Continuous testing should be used to ensure that future updates do not break existing
code.

• Performance. ΦML should be able to make use of hardware accelerators, such as GPUs
and TPUs, where possible. During development, we prioritize rapid code iterations over
execution speed but the completed code should run as fast as if written directly against
the chosen ML library.

In the following, we explain the architecture and major features that help ΦFlow reach these
goals. ΦML consists of a high-level NumPy-like API geared towards writing easy-to-read and
scalable simulation code, as well as a neural network API designed to allow users to quickly
iterate over many network architectures and hyperparameter settings. Similar to eagerpy
(Rauber et al., 2020), ΦML integrates with Jax (Bradbury et al., 2018), PyTorch (Paszke et
al., 2019), TensorFlow (Abadi et al., 2016) and NumPy (Harris et al., 2020) and provides a
custom Tensor class. However, ΦML adds additional functionality.

• Dimension names. Tensor dimensions are always referenced by their user-defined name,
not their index. We support the syntax tensor.dim for operations like indexing or
unstacking to make using dimension names as simple as possible.

• Automatic reshaping. ΦML automatically transposes tensors and inserts singleton
dimensions to match arguments. Consequently, user code is agnostic to the dimension
order by default.

• Element names. Slices or items along dimensions can be named as well, e.g. allowing
users to specify that a dimension lists the values (x,y,z) or (r,g,b). These names can
be used in slicing, gathering and scattering operations.

• Dimension types. Tensor dimensions are grouped into five different types: batch, spatial,
instance, channel, and dual. This allows tensor-related functions to automatically select
dimensions to operate on, without requiring the user to specify individual dimensions.

• Non-uniform tensors. Stacking tensors with different dimension sizes yields non-uniform
tensors. ΦML keeps track of the resulting shape, allowing users to operate on non-uniform
tensors the same way as uniform ones.

• Floating-point precision by context. All tensor operations determine the desired floating
point precision from the operation context, not the data types of its inputs. This is
much simpler and more predictable than the systems used by other libraries.

• Lazy stacking. New memory is only allocated once stacked data is required as a block.
Consequently, functions can unstack the components, operate on them individually, and
restack them, without worrying about unnecessary memory allocations.

• Sparse matrices from linear functions. ΦML can transform linear functions into their cor-
responding sparse matrix representation. This makes solving linear systems of equations
more performant and enables computation of preconditioners.

• Compute device from Inputs. Tensor operations execute on the device on which the
tensors reside. This prevents unintentional copies and transfers, as users have to explicitly
declare them.

• Custom CUDA Operatorions. ΦML provides custom CUDA kernels for specific operations
that could bottleneck simulations, such as grid sampling for TensorFlow or linear solves.
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Research Projects
ΦML has been in development since 2019 as part of the PhiFlow (ΦFlow) project where
it originated as a unified API for TensorFlow and NumPy, used to run differentiable fluid
simulations. ΦFlow includes geometry, physics, and visualization modules, all of which use the
math API of ΦML to benefit from its reusability, compatibility, and performance.

It was first used to show that differentiable PDE simulations can be used to train neural
networks that steer the dynamics towards desired outcomes (Holl et al., 2019). Differentiable
PDEs, implemented against ΦML’s API, were later shown to benefit learning corrections for
low-resolution or incomplete physics models (Um et al., 2020). These findings were summarized
and formalized in Thuerey et al. (2022), along with many additional examples.

The library was also used in network optimization publications, such as showing that inverted
simulations can be used to train networks (Holl et al., 2022) and that gradient inversion
benefits learning the solutions to inverse problems (Schnell et al., 2021).

Simulations powered by ΦML have since been used in open data sets (Gupta & Brandstetter,
2022; Takamoto et al., 2022) and in publications from various research groups (Brandstetter
et al., 2021, 2023; Li et al., 2023; Parekh et al., 1993; Ramos et al., 2022; Sengar et al., 2021;
Wandel et al., 2020, 2021; P. Wang, 2023; R. Wang et al., 2022a, 2022b; Wu et al., 2022).
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