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Summary
elsa is a versatile framework in the landscape of X-ray tomography, offering a powerful toolkit
for developing iterative reconstruction algorithms. It is primarily designed for challenging
applications in classical attenuation X-ray computed tomography (CT) and advanced modalities
like Phase-Contrast X-ray CT (PCCT) or Anisotropic Dark-field tomography (AXDT). elsa
stands out with an extensive set of building blocks and a unified abstraction, providing the
means for high-quality reconstructions across a spectrum of imaging modalities and applications.

Designed as an operator- and optimisation-based framework, elsa takes a mathematical approach
to model the reconstruction pipeline of imaging modalities. Through formulating optimization
problems and a suite of iterative reconstruction algorithms, elsa addresses challenges in
attenuation X-ray CT, PCCT, and AXDT.

The core of elsa (developed in modern C++ with GPU acceleration) ensures efficiency, while
its Python interface allows easy accessibility for students and researchers.

Distinctively, elsa positions itself as a unique solution by supporting modern iterative reconstruc-
tion techniques for novel X-ray CT imaging modalities. The framework addresses challenges
associated with X-ray CT, such as arbitrary trajectories, automatic differentiation, differential
signals for PCCT, and spherical function valued reconstructions for AXDT, offering a simple
abstraction for implementing tailored reconstruction methods.

Statement of need
The introduction of X-ray Computed Tomography (CT) in the 1970s revolutionized medical
diagnostics, offering unprecedented insights into the human body’s internal structures. Unlike
traditional radiography, CT requires reconstructions through computation, which introduced
the need for software frameworks. Popular frameworks include ASTRA (Aarle et al., 2016),
SCICO (Balke et al., 2022), the Core Imaging Library (Jørgensen et al., 2021; Papoutsellis et
al., 2021), and ODL (Adler et al., 2017). These standard reconstructions of attenuation X-ray
CT can also be performed using elsa, see Figure 1.
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Figure 1: Example reconstructions of two different attenuation X-ray CT datasets. Left: Axial center
slice of the walnut dataset from Meaney (2022). Right: Lateral center slice of the seashell dataset
from Kamutta et al. (2022). The reconstructions can be reproduced using a script included in the elsa
repository at examples/dataset/fips_apgd_nonneg.py.

In recent years, one of the major challenges tackled by research is the reduction of X-ray
dose. As X-rays induce harm in humans, reducing the dose as much as possible is vital.
However, lowering the X-ray dose results in worse reconstruction quality. Many reconstruction
techniques have been developed to maintain a high reconstruction quality with a reduced X-ray
dosage. However, this still remains a challenging problem to this day. Figure 2 highlights
this challenge on the 2DeteCT dataset (Kiss et al., 2023). It illustrates the intricacies of
low-dose reconstruction and demonstrates the versatility of elsa in handling diverse optimization
problems for different noise assumptions.

Figure 2: Reconstruction of slice 29 of the 2DeteCT dataset (Kiss et al., 2023) visualizing the difference
between high-dose and different low-dose reconstructions. The leftmost image displays a reconstruction
using high-dose data (with a least squares data term), while the subsequent three images represent
reconstructions using low-dose measurements, from left to right: with Gaussian, non-stationary Gaussian,
and Poisson noise based data terms. The reconstructions can be reproduced using a script available in
the elsa repository at examples/dataset/2detect_apgd_wls_nonneg.py.

Classical X-ray CT, reliant on X-ray attenuation, faces limitations in soft tissue contrast and
spatial resolution. With the advent of modern imaging modalities, consideration of additional
physical effects, such as refraction and scatter, introduce both opportunities and challenges. A
particularly challenging example (AXDT) is shown in Figure 3, demonstrating the ability to
reconstruct high-dimensional spherical scattering functions using elsa.
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Figure 3: Reconstructed wooden stick sample using Anisotropic X-ray Dark-field Tomography (AXDT).
Shown is a slice of the isotropic scattering component (spherical harmonics of degree 0, order 0), using dif-
ferent noise models for the data. On the left, the mean intensity data was (correctly) assumed to be Rician,
while on the right, the dark-field signal was assumed to be Gaussian. The reconstructions can be repro-
duced using a script present in the elsa repository at examples/axdt/crossed_sticks2_dataset/main.py.

In this landscape, elsa is a distinctive framework focusing on iterative reconstruction techniques
for modern X-ray CT imaging modalities. Offering a rich set of tools, elsa addresses challenges
in fields like X-ray CT with arbitrary trajectories, automatic differentiation, differential signals
for PCCT, and spherical function valued reconstructions for AXDT. Its unique contribution
lies in supporting novel X-ray-based imaging modalities, while providing a versatile platform
for tailored reconstruction methods.

elsa has been integral to our group’s research and vital to our scientific publications. Noteworthy
application examples include robotic X-ray CT and trajectory optimization (Pekel et al., 2022a,
2022b, 2023), as well as successful integration with deep learning approaches (Cheslerean-
Boghiu et al., 2023). Recognized in scientific conferences (Frank et al., 2023; Lasser et al.,
2019), elsa is an indispensable tool, contributing significantly to advancing the field of X-ray
tomography.

Supported Features
Reconstruction problems are formulated as mathematical optimization problems within elsa,
i.e., one minimizes a data fidelity term, augmented with regularization to incorporate prior
knowledge. The framework automatically computes first and second derivatives for these
problems.

elsa accommodates diverse data fidelity terms, such as (weighted) least squares and Poisson log-
likelihood, and supports a variety of regularization techniques, including L2, sparsity-inducing
L1, total variation, and Plug-and-Play (PnP) priors.

Able to be tailored to specific problem formulations, elsa supports a diverse set of iterative
reconstruction algorithms, including gradient-based methods (FGM, OGM), splitting-based
methods (ISTA, FISTA, ADMM), and primal-dual algorithms (PDHG).

elsa implements multiple forward model approximations for attenuation X-ray CT, such as the
Siddon’s and Joseph’s method, available for both CPU and CUDA. All our models support
arbitrary acquisition trajectories in cone-beam geometry via projection matrices. For PCCT,
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the forward model employs differentiable Kaiser-Bessel functions and B-Splines, with additional
support for spherical functions and spherical harmonics.

Developed in modern C++, elsa features an accessible Python interface. Comprehensive
Python examples, such as those that produce the reconstructions in Figure 1 and Figure 2,
accompany the software. The documentation, hosted at https://ciip.cit.tum.de/elsadocs/,
includes API documentation, guides, and tutorials. elsa maintains code correctness, stability,
and quality through continuous integration of changes with its high test coverage.
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