
dropout: an R Package for Addressing Dropouts,
Missing Values, and Sectional Challenges in Survey
Data Analysis
Hendrik Mann 1

1 University of Wuppertal, Germany
DOI: 10.21105/joss.06181

Software
• Review
• Repository
• Archive

Editor: Samuel Forbes
Reviewers:

• @medewitt
• @max-alletsee
• @Darthpathos

Submitted: 20 November 2023
Published: 30 March 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Missing data can reduce the statistical power of a study and can produce biased estimates,
leading to invalid conclusions (Kang, 2013). When working with survey data, capturing and
categorizing missing values is crucial for maintaining data quality. The dropout package assists
in distinguishing whether missing values are isolated instances, sectional missing values, or
complete dropouts and offers the tools to identify those participants. This distinction enables
effective data cleaning and provides insights into the study design and the response behaviors
of participants.

Statement of need
dropout is an R package (R Core Team, 2022) available on CRAN that is designed to distinguish
between different types of missing values in survey data. It allows users to identify whether
missing values are due to complete dropouts - participants who stop answering the questionnaire
completely, participants who skip whole sections, or isolated instances of NA values. Unlike
current R packages that deal with missing values in data analysis by (visually) producing
summary statistics that treat each missing value equally, such as naniar (Tierney & Cook,
2023) and mde (Gonzabato, 2022), dropout classifies missing values based on the occurrence of
single missing values, section dropouts and complete dropouts. This allows dropout to produce
summary statistics of different response patterns and relate them to the overall occurrence
of missing values. Unlike daqapo (Martin, 2022), a package that can also be used to find
sequential gaps of missing values for participants, dropout allows you to use its summary
statistics and detect participants based on their classified response pattern. This enables a
simpler workflow for data cleaning and further analysis.

Usage
dropout includes two essential functions, beginning with drop_summary. This function is
designed to generate summary statistics for missing values in your dataset. It requires two
primary inputs: the dataframe to analyze and the identifier of the last survey item. The latter
is particularly important in cases where your data includes additional columns generated by the
survey platform, such as participation time. These extra items can lead to biased results in the
function, as no dropouts may be detected if the last column has no missing values. To counter
this, if the last_col argument is left unspecified, drop_summary will automatically address the
issue by setting last_col to the last column in the dataframe that contains missing values,
and it will issue a warning to inform the user. For optimal usage of the dropout package,
it’s generally good practice to ensure your dataframe either exclusively contains the survey

Mann. (2024). dropout: an R Package for Addressing Dropouts, Missing Values, and Sectional Challenges in Survey Data Analysis. Journal of
Open Source Software, 9(95), 6181. https://doi.org/10.21105/joss.06181.

1

https://orcid.org/0009-0007-3222-899X
https://doi.org/10.21105/joss.06181
https://github.com/openjournals/joss-reviews/issues/6181
https://github.com/hendr1km/dropout
https://doi.org/10.6084/m9.figshare.25355746.v1
https://orcid.org/0000-0003-1022-4676
https://github.com/medewitt
https://github.com/max-alletsee
https://github.com/Darthpathos
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06181

items, or that the last_col argument is manually set to the last survey item in your dataset.
Generally, it is essential to index all survey items in the dataframe in their correct order. An
optional argument of the drop_summary function is section_min. This parameter plays a
crucial role when drop_summary is used to detect sections that participants may have skipped.
By default, it looks for at least three consecutive missing items to identify a skipped section.
This threshold seems to be sensitive enough to differentiate between single missing values and
section omissions. However, it’s advisable to experiment with different section_min settings
to find the optimal threshold that aligns with your specific study design.

drop_detect works similarly to drop_summary and requires the same input arguments. However,
instead of generating summary statistics for each question in your dataframe, drop_detect
focuses on identifying dropouts for each participant. The output includes a logical column
indicating whether a participant dropped out, and if so, it specifies the question and the index
in the dataframe where this occurred. This functionality allows for the filtering of dropouts
based on specific columns or indexes. Furthermore, the last_col argument in drop_detect

is particularly useful for identifying participants who skipped specific sections. This can be
achieved either by creating a subset of the dataframe containing only the items from that
section or by setting the last_col argument to the last item of the section. These and other
applications can be easily integrated with verbs from the tidyverse (Wickham et al., 2019).

Examples
For the following examples we will use an adapted version of the Flying Etiquette by five-
thirty-eight dataset (Hickey, 2014) that is included in the dropout package. In these workflow
examples, I will be using dplyr verbs (Wickham et al., 2023) — although this is not necessary.

As illustrated with the flying dataset example, even though all columns are arranged in the
correct order of survey items, the last column survey_type does not correspond to a survey item.
In such scenarios, the dropout package intuitively addresses this issue by disregarding the non-
survey column and automatically setting the last_col argument to location_census_region.
This adjustment is accompanied by a warning to inform the user. However, in more complex
situations, it’s advisable to either create a subset of your data or manually set the last_col
argument to the actual last survey item. We will demonstrate this approach in the following
examples.

install.packages(c("dropout", "tidyverse"))

library(dropout)

library(tidyverse)

data(flying)

Initially, we use the drop_summary function to generate an overview of the different types of
missing values in our dataframe. From this analysis, it becomes evident that certain parts of the
survey experience higher dropout rates. Notably, 18 participants dropped out early, at the third
survey item, culminating in a total of 42 dropouts by the end of the survey. The ´section_na´
column reveals that 164 participants skipped an entire section of the questionnaire, or at least
a consecutive portion identifiable as a section in this context. Furthermore, single missing
values are particularly prevalent in responses to the household income question.

flying %>%

drop_summary(last_col = "location_census_region") %>%

print(n = Inf)

In the subsequent step, we aim to refine our dataset to include only those survey participants
who did not experience an early dropout at the third question and who completed the survey
without any dropouts. To achieve this, we utilize the drop_detect function, which identifies
participants according to dropout status at specified points within the survey. By merging the

Mann. (2024). dropout: an R Package for Addressing Dropouts, Missing Values, and Sectional Challenges in Survey Data Analysis. Journal of
Open Source Software, 9(95), 6181. https://doi.org/10.21105/joss.06181.

2

https://doi.org/10.21105/joss.06181

output with our original data, we can then apply a filter to retain only the desired respondents.
Once filtered, we remove the additional columns introduced by drop_detect as they are no
longer necessary for further analysis. While not demonstrated in this example, this method of
indexing is particularly advantageous when we need to perform complex manipulations, such
as excluding all participants who dropped out before reaching the tenth item in the survey.

flying_dropouts <- flying %>%

drop_detect(last_col = "location_census_region")

head(flying_dropouts)

flying_cleaned <- flying_dropouts %>%

bind_cols(flying) %>%

filter(dropout_col != "seat_recline" | dropout == FALSE) %>%

select(-starts_with("dropout"))

Next, we aim to exclude the 164 participants who skipped an entire section of the survey
without fully dropping out. This can be accomplished through two approaches. The first
method involves setting the last_col argument of the drop_detect function to the last column
of the omitted section. By doing so, all participants who skipped the entire section will be
flagged as dropouts, making it straightforward to exclude them. The second method requires
creating a subset of the dataset that includes only the columns of the concerned section. This
subset can then be used to specifically filter for section-based dropouts. It is important to
note that when working with such a subset, the indices provided by dropout_index might
correspond to the subset’s dataframe and not the original one. This distinction is crucial for
accurately mapping the dropout information back to the complete dataset, when using a subset
starting not from column one of the origional dataset. In method 2 this is not an issue.

method 1 (recommended as indexes of dropout_index will still match the data)

flying_cleaned %>%

drop_detect(last_col = "smoking_violation") %>%

bind_cols(flying_cleaned) %>%

filter(dropout_col != "seat_recline" | dropout == FALSE) %>%

select(-starts_with("dropout"))

method 2 (if the dropout_index will still match the data depends on the subset)

flying_cleaned %>%

select(1:22) %>%

drop_detect() %>%

bind_cols(flying_cleaned) %>%

filter(dropout_col != "seat_recline" | dropout == FALSE) %>%

select(-starts_with("dropout"))

In this article’s concluding section, we explore the practical applications of these techniques in
analyzing distinct dropout behaviors. Through the visualisation in Figure 1, we will contrast
participants who omitted a particular survey section with those who partially completed it or
had missing values that did not start at the beginning of the section. We will segment this
comparative analysis by gender to illustrate how one might investigate varying dropout behaviors
across different demographic groups. This approach exemplifies how data on dropout patterns
can be dissected to yield insights into the participant experience and inform improvements in
survey design.

library(ggplot)

flying_section <- flying_cleaned %>%

select(3:22) %>%

drop_detect(last_col = "smoking_violation") %>%

Mann. (2024). dropout: an R Package for Addressing Dropouts, Missing Values, and Sectional Challenges in Survey Data Analysis. Journal of
Open Source Software, 9(95), 6181. https://doi.org/10.21105/joss.06181.

3

https://doi.org/10.21105/joss.06181

bind_cols(flying_cleaned) %>%

filter(dropout_col == "seat_recline") %>%

count(gender) %>%

rename(omitted = n)

figure1 <- flying_cleaned %>%

count(gender) %>%

rename(N = n) %>%

drop_na() %>%

left_join(flying_section) %>%

mutate(completed = N - omitted) %>%

pivot_longer(3:4, values_to = "n", names_to = "condition") %>%

ggplot(aes(x = gender, y = n, fill = condition)) +

geom_col(position = "dodge")

Both the drop_summary and drop_detect functions are designed for seamless integration
into data analysis workflows and pipelines. These functions facilitate an easy visualization of
their output. In the following example of Figure 2, we utilize the drop_summary function to
visually represent missing values in the dataframe. The visualization distinctly categorizes the
missing values into three types: dropouts, section_na (entire sections left out), and single_na
(individual missing values).

fig2 <- flying %>%

drop_summary(last_col = "location_census_region") %>%

select(column_name, dropout, section_na, single_na) %>%

pivot_longer(-column_name, names_to = "missing", values_to = "values") %>%

mutate(column_name = fct_inorder(column_name)) %>%

ggplot(aes(x = column_name, y = values, group = missing, col = missing))+

geom_line()+

geom_point()+

scale_x_discrete(guide = guide_axis(angle = 45))+

xlab("items")+

ylab("missing values")

Mann. (2024). dropout: an R Package for Addressing Dropouts, Missing Values, and Sectional Challenges in Survey Data Analysis. Journal of
Open Source Software, 9(95), 6181. https://doi.org/10.21105/joss.06181.

4

https://doi.org/10.21105/joss.06181

References

Figures

0

100

200

300

400

Female Male

gender

n

condition

completed

omitted

Figure 1: Analyzing Dropout Patterns and Missing Values with the ‘dropout’ Package. This graph
illustrates the proportions of male and female participants who either omitted or completed the section of
the survey from ‘seat_recline’ to ‘smoking_validation’. It compares those who skipped this entire section
(labeled as ‘omitted’) with those who either fully completed it or ceased responding past this section
(labeled as ‘completed’).

Mann. (2024). dropout: an R Package for Addressing Dropouts, Missing Values, and Sectional Challenges in Survey Data Analysis. Journal of
Open Source Software, 9(95), 6181. https://doi.org/10.21105/joss.06181.

5

https://doi.org/10.21105/joss.06181

0

50

100

150

re
sp

on
de

nt
_i
d

tra
ve

l_
fre

qu
en

cy

se
at

_r
ec

lin
e

he
ig
ht

ch
ild

re
n_

un
de

r_
18

tw
o_

ar
m

re
st
s

m
id
dl
e_

ar
m

re
st

w
in
do

w
_s

ha
de

m
ov

in
g_

to
_u

ns
ol
d_

se
at

ta
lk
in
g_

to
_s

ea
tm

at
e

ge
tti
ng

_u
p_

on
_6

_h
ou

r_
fli
gh

t

ob
lig

at
io
n_

to
_r

ec
lin

ed
_s

ea
t

re
cl
in
e_

se
at

_r
ud

en
es

s

el
im

in
at

e_
re

cl
in
in
g_

se
at

s

sw
itc

h_
fo

r_
fri

en
ds

sw
itc

h_
fo

r_
fa

m
ily

w
ak

e_
pa

ss
en

ge
r_

ba
th

ro
om

w
ak

e_
pa

ss
en

ge
r_

w
al
k

ba
by

_o
n_

pl
an

e

un
ru

ly
_c

hi
ld
re

n

el
ec

tro
ni
cs

_v
io
la
tio

n

sm
ok

in
g_

vi
ol
at

io
n

ge
nd

er
ag

e

ho
us

eh
ol
d_

in
co

m
e

ed
uc

at
io
n

lo
ca

tio
n_

ce
ns

us
_r

eg
io
n

items

m
is

s
in

g
 v

a
lu

e
s

missing

dropout

section_na

single_na

Figure 2: Visualization of Missing Values in the Flying Dataset. Note: A concentration of missing
values is observed in the section ranging from ‘seat_recline’ to ‘smoking_violation’, as indicated by the
‘section_na’ category. Additionally, the ‘household income’ variable is notably omitted by a portion of
the participants, categorized as ‘single_na’ values. This pattern highlights specific areas in the survey
where participant engagement varies.

Gonzabato, N. (2022). Mde: Missing data explorer. https://CRAN.R-project.org/package=
mde

Hickey, W. (2014). 41 percent of fliers think you’re rude if you recline your seat. GitHub.
https://github.com/fivethirtyeight/data/tree/master/flying-etiquette-survey

Kang, H. (2013). The prevention and handling of the missing data. Korean Journal of
Anesthesiology, 64(5), 402. https://doi.org/10.4097/kjae.2013.64.5.402

Martin, N. (2022). Daqapo: Data quality assessment for process-oriented data. https:
//CRAN.R-project.org/package=daqapo

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation
for Statistical Computing. https://www.R-project.org/

Tierney, N., & Cook, D. (2023). Expanding tidy data principles to facilitate missing data
exploration, visualization and assessment of imputations. Journal of Statistical Software,
105(7), 1–31. https://doi.org/10.18637/jss.v105.i07

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund,
G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M.,
Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome
to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/
joss.01686

Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). Dplyr: A grammar
of data manipulation. https://dplyr.tidyverse.org

Mann. (2024). dropout: an R Package for Addressing Dropouts, Missing Values, and Sectional Challenges in Survey Data Analysis. Journal of
Open Source Software, 9(95), 6181. https://doi.org/10.21105/joss.06181.

6

https://CRAN.R-project.org/package=mde
https://CRAN.R-project.org/package=mde
https://github.com/fivethirtyeight/data/tree/master/flying-etiquette-survey
https://doi.org/10.4097/kjae.2013.64.5.402
https://CRAN.R-project.org/package=daqapo
https://CRAN.R-project.org/package=daqapo
https://www.R-project.org/
https://doi.org/10.18637/jss.v105.i07
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
https://dplyr.tidyverse.org
https://doi.org/10.21105/joss.06181

	Summary
	Statement of need
	Usage
	Examples
	References
	Figures

