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Summary
Normalizing flows (NFs, Papamakarios et al., 2021) are tractable neural density estimators
which have in the recent past been applied successfully for, e.g., generative modelling (Kingma
& Dhariwal (2018), Ping et al. (2020)), Bayesian inference (Rezende & Mohamed (2015),
Hoffman et al. (2019)) or simulation-based inference (Papamakarios et al. (2019), Dirmeier,
Albert, et al. (2023)). Surjectors is a Python library in particular for surjective, i.e.,
dimensionality-reducing normalizing flows (SNFs, Klein et al. (2021)). Surjectors is based
on the libraries JAX, Haiku and Distrax (Bradbury et al. (2018), Babuschkin et al. (2020))
and is fully compatible with them. By virtue of being entirely written in JAX (Bradbury et al.,
2018), Surjectors naturally supports usage on either CPU, GPU or TPU.

Statement of Need
Real-world data are often lying in a high-dimensional ambient space embedded in a lower-
dimensional manifold (Fefferman et al., 2016) which can complicate estimation of probability
densities (Dai & Seljak (2021), Klein et al. (2021), Nalisnick et al. (2019)). As a remedy,
recently neural density estimators using surjective normalizing flows (SNFs) have been proposed
which reduce the dimensionality of the data while still allowing for exact computation of data
likelihoods (Klein et al., 2021). While several computational libraries exist that implement
bijective normalizing flows, i.e., flows that are dimensionality-preserving, currently none exist
that efficiently implement dimensionality-reducing flows.

Surjectors is a normalizing flow library that implements both bijective and surjective nor-
malizing flows. Surjectors is light-weight, conceptually simple to understand if familiar with
the JAX ecosystem, and computationally efficient due to leveraging the XLA compilation and
vectorization from JAX. We additionally make use of several well-established packages within
the JAX ecosystem (Bradbury et al., 2018) and probabilistic deep learning community. For
composing the conditioning networks that NFs facilitate, Surjectors uses the deep learning
library Haiku (Hennigan et al., 2020). For training and optimization, we utilize the gradi-
ent transformation library Optax (Babuschkin et al., 2020). Surjectors leverages Distrax
(Babuschkin et al., 2020) and TensorFlow probability (Dillon et al., 2017) for probability
distributions and several base bijector implementations.

Adoption
Dirmeier, Albert, et al. (2023) have proposed a novel method for simulation-based inference
where they make use autoregressive inference surjections for density estimation and where
they are using Surjectors for their implementations. Dirmeier, Hong, et al. (2023) used
Surjectors for uncertainty quantification and out-of-distribution detection in deep neural
network models.
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