Surjectors: surjection layers for density estimation with normalizing flows

Simon Dirmeier¹,²

¹ Swiss Data Science Center, Zurich, Switzerland ² ETH Zurich, Zurich, Switzerland

DOI: 10.21105/joss.06188

Summary

Normalizing flows (NFs, Papamakarios et al., 2021) are tractable neural density estimators which have in the recent past been applied successfully for, e.g., generative modelling (Kingma & Dhariwal (2018), Ping et al. (2020)), Bayesian inference (Rezende & Mohamed (2015), Hoffman et al. (2019)) or simulation-based inference (Papamakarios et al. (2019), Dirmeier, Albert, et al. (2023)). Surjectors is a Python library in particular for surjective, i.e., dimensionality-reducing normalizing flows (SNFs, Klein et al. (2021)). Surjectors is based on the libraries JAX, Haiku and Distrax (Bradbury et al. (2018), Babuschkin et al. (2020)) and is fully compatible with them. By virtue of being entirely written in JAX (Bradbury et al., 2018), Surjectors naturally supports usage on either CPU, GPU or TPU.

Statement of Need

Real-world data are often lying in a high-dimensional ambient space embedded in a lower-dimensional manifold (Fefferman et al., 2016) which can complicate estimation of probability densities (Dai & Seljak (2021), Klein et al. (2021), Nalisnick et al. (2019)). As a remedy, recently neural density estimators using surjective normalizing flows (SNFs) have been proposed which reduce the dimensionality of the data while still allowing for exact computation of data likelihoods (Klein et al., 2021). While several computational libraries exist that implement bijective normalizing flows, i.e., flows that are dimensionality-preserving, currently none exist that efficiently implement dimensionality-reducing flows.

Surjectors is a normalizing flow library that implements both bijective and surjective normalizing flows. Surjectors is light-weight, conceptually simple to understand if familiar with the JAX ecosystem, and computationally efficient due to leveraging the XLA compilation and vectorization from JAX. We additionally make use of several well-established packages within the JAX ecosystem (Bradbury et al., 2018) and probabilistic deep learning community. For composing the conditioning networks that NFs facilitate, Surjectors uses the deep learning library Haiku (Hennigan et al., 2020). For training and optimization, we utilize the gradient transformation library Optax (Babuschkin et al., 2020). Surjectors leverages Distrax (Babuschkin et al., 2020) and TensorFlow probability (Dillon et al., 2017) for probability distributions and several base bijector implementations.

Adoption

Dirmeier, Albert, et al. (2023) have proposed a novel method for simulation-based inference where they make use autoregressive inference surjections for density estimation and where they are using Surjectors for their implementations. Dirmeier, Hong, et al. (2023) used Surjectors for uncertainty quantification and out-of-distribution detection in deep neural network models.


