
Enlsip.jl: A Julia optimization package to solve
constrained nonlinear least-squares problems
Pierre Borie 1, Alain Marcotte 2, Fabian Bastin 1, and Stéphane
Dellacherie 2,3

1 Department of Computer Science and Operations Research, University of Montreal, Montreal, QC,
Canada 2 Unit of Inflow and Load Forecasting, Hydro-Québec, Montreal, QC, Canada 3 Department of
Computer Science, UQÀM, Montreal, QC, Canada

DOI: 10.21105/joss.06226

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @tmigot
• @odunbar

Submitted: 31 October 2023
Published: 22 May 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Enlsip.jl is a Julia (Bezanson et al., 2017) package that implements a solver for nonlinear
least-squares problems with nonlinear constraints.

This type of problem is mathematically formulated as:

min
𝑥∈ℝ𝑛

1
2

𝑚
∑
𝑖=1

𝑟𝑖(𝑥)2

s.t. 𝑐𝑖(𝑥) = 0, 𝑖 = 1,… , 𝑞
𝑐𝑖(𝑥) ≥ 0, 𝑖 = 𝑞 + 1,… , ℓ,

(1)

where the functions (𝑟1,… , 𝑟𝑚), often denoted as the residuals, and constraints (𝑐1,… , 𝑐ℓ)
are two-times differentiable.

This package is the Julia version of ENLSIP (Easy Nonlinear Least Squares Inequality Program),
an open-source Fortran77 library developed by Lindström & Wedin (1988)1.

Statement of need
The ENLSIP Fortran77 library has been successfully used since the early 2000s by Hydro-Québec,
the main electricity supplier for the province of Quebec in Canada, to calibrate its short-term
electricity demand forecast models (Grenier et al., 2006), which are coded in Fortran90. Since
Hydro-Québec is transitioning from Fortran77 to Julia and its systems are used in a highly
critical context, the primary goal of this transition is to ensure that the replacing Julia version
reproduces the results obtained with the original Fortran77 version. The conversion of the
above-mentioned ENLSIP library to Julia is a crucial part of this process.

Nonlinear least-squares problems arise in a variety of model calibration scenarios. Formulation
(1) is particularly relevant in contexts where additional constraints, such as those related to
physical models, need to be satisfied. This is due to the high-risk nature of Hydro-Québec’s
forecasting operations. Moreover, the specific structure of the objective function in (1) can be
exploited to design algorithms more efficient than solvers for general nonlinear programming
applied to problem (1).

Comparison of results and performance on operational Hydro-Québec optimization problems
have been conducted using a Julia-Fortran interface and they have shown very good concordance
results. We additionally compared numerical results on nonlinear programming test problems

1The source code is available at https://plato.asu.edu/sub/nonlsq.html

Borie et al. (2024). Enlsip.jl: A Julia optimization package to solve constrained nonlinear least-squares problems. Journal of Open Source Software,
9(97), 6226. https://doi.org/10.21105/joss.06226.

1

https://orcid.org/0009-0000-1043-5057
https://orcid.org/0009-0009-5964-8892
https://orcid.org/0000-0003-1323-6787
https://orcid.org/0009-0005-9043-9328
https://doi.org/10.21105/joss.06226
https://github.com/openjournals/joss-reviews/issues/6226
https://github.com/UncertainLab/Enlsip.jl.git
https://doi.org/10.5281/zenodo.11206280
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/tmigot
https://github.com/odunbar
https://creativecommons.org/licenses/by/4.0/
https://github.com/UncertainLab/Enlsip.jl
https://plato.asu.edu/sub/nonlsq.html
https://doi.org/10.21105/joss.06226

(Hock & Schittkowski, 1980; Lukšan & Vlček, 1999) to ascertain whether the two versions
could yield significantly disparate outcomes or distinct solutions. On the tested problems, we
observed no differences in convergence behavior. Furthermore, the obtained solutions did not
differ from a predetermined tolerance, the same one we previously employed to ensure the
results of our Julia version were consistent with the requirements of Hydro-Québec.

Method
The ENLSIP solver incorporates an iterative Gauss-Newton method designed to find a first-
order critical point of problem (1). At each iteration, the algorithm solves an approximation
of the original problem obtained after linearizing both residuals and constraints in a small
neighborhood of the current point. Then, a subset of constraints, treated as equalities for
the ongoing iteration, is formed. It contains all the equality constraints and the inequality
constraints that are believed to be active, i.e. satisfied with equality, at the solution. To select
the appropriate inequality constraints at each iteration, the authors implemented a strategy
that follows the principles outlined in the Chapter 6 of Gill et al. (1981). The resulting
subproblem, with a linear least-squares objective and linear equality constraints, is then solved
using a null-space type method (Nocedal & Wright, 2006, Chapter 15).

To our knowledge, there is no formal proof of convergence for the method implemented in
ENLSIP, although local convergence at a linear rate is to be expected from the Gauss-Newton
paradigm. In practice, one can observe better performance when the starting point is relatively
close to a solution of the problem. However, the algorithm is not suitable for large-scale
applications. Indeed, its performance tend to deteriorate on problems with a few hundreds of
parameters and constraints (𝑛 + ℓ ≥ 200) and more than a thousand residuals (𝑚 ≥ 1000).

From Fortran77 to Julia
Our first motivation to convert ENLSIP in Julia was to improve reliability, readability and ease
of maintenance of the original code. Also, linear algebra tools in Julia, based on OpenBLAS,
benefit from improved implementations than those of the algorithm by Lindström & Wedin
(1988), based on MINPACK. Furthermore, this language is highly convenient for optimization,
offering various interface tools such as JuMP (Dunning et al., 2017) or NLPModels (Orban et
al., 2020), to model optimization problems. Although these libraries are not currently used in
our package, they are under consideration for future developments.

Numerical experiments
The performance of the two versions have been compared on problems derived from Hydro-
Québec operations and also problems from the literature. We illustrate this comparison on the
estimation of CM1 (Carole Mercier-1) model parameters; it is a nonlinear regression model
used for the hourly load forecast (Grenier et al., 2006). The calibration process requires the
use of weather data collected across the province of Quebec. The configuration of this model
can be adapted to the number of parameters to be calibrated and the amount of data to be
used. In total, 90 different instances can be thus defined with the following features:

• from 258 to 726 parameters,
• from 468 to 716 total constraints (with 2 to 10 equalities),
• from 4392 to 17,568 residuals.

Due to the differences in how computations are organized between Fortran77 and Julia,
especially in linear algebra, minor numerical discrepancies were expected to emerge and
accumulate, leading to slightly different outcomes or total number of iterations performed.

Out of 90 instances, 26 either failed to converge or stopped because of a numerical error
occurring during the execution of both ENLSIP versions. These results were due to inconsisten-
cies in the problem formulation of a given family of instances and thus, they do not reflect

Borie et al. (2024). Enlsip.jl: A Julia optimization package to solve constrained nonlinear least-squares problems. Journal of Open Source Software,
9(97), 6226. https://doi.org/10.21105/joss.06226.

2

http://www.openblas.net
https://www.netlib.org/minpack/
https://doi.org/10.21105/joss.06226

the robustness of the method implemented in ENLSIP. For the 64 remaining instances, both
versions reached similar solutions that met Hydro-Québec specifications. Although specific
values cannot be disclosed in this paper, the performance profile (Dolan & Moré, 2002) in
Figure 1 suggests that our Julia version has similar, if not better, performance than the
Fortran77 version. However, these results must be weighted by the number of iterations
performed by the two algorithms. Indeed, our Julia version often required less iterations. We
argue that the better efficiency of the linear algebra routines from OpenBLAS as compared to
those from MINPACK may contribute to shorter computation times.

Figure 1: Computation time performance profile of ENLSIP-Fortran77 (dashed curve) and Enlsip.jl
(continuous curve) on 90 instances of the CM1 model calibration.

Other nonlinear least-squares packages
Several existing Julia packages can be used to solve nonlinear least-squares problems. For
unconstrained and bound-constrained problems, these include NL2sol.jl (Dennis Jr et al., 1981),
LsqFit.jl and LeastSquaresOptim.jl. Also available are least-squares variants of the TRUNK and
TRON (Lin & Moré, 1999) solvers from JSOSolvers.jl (Migot et al., 2023). The CaNNOLeS.jl
(Orban & Siqueira, 2020) package handles the equality-constrained case. However, these
libraries do not entirely apply to the formulation stated in (1), for which more general solvers,
such as Ipopt.jl (Wächter & Biegler, 2006), are typically used.

Although our package may not incorporate the latest advancements in nonlinear optimization,
especially for large-scale problems, its use remains relevant. Indeed, the method employed
in ENLSIP manages to exploit the least-squares structure while also remaining very general,
covering nonlinearity and non-convexity of the residuals and constraints. This capability renders
it an effective tool for solving problems of reasonable dimensions (𝑛 ≤ 500 and 𝑚 ≤ 1000).
Moreover, in comparison to other categories, like the unconstrained case (as discussed in
Dennis Jr & Schnabel, 1996, Chapter 10), this specific class of least-squares problems with
general constraints is, to the best of our knowledge, rarely addressed in the literature.

Borie et al. (2024). Enlsip.jl: A Julia optimization package to solve constrained nonlinear least-squares problems. Journal of Open Source Software,
9(97), 6226. https://doi.org/10.21105/joss.06226.

3

https://github.com/macd/NL2sol.jl
https://github.com/JuliaNLSolvers/LsqFit.jl
https://github.com/matthieugomez/LeastSquaresOptim.jl
https://github.com/JuliaSmoothOptimizers/CaNNOLeS.jl
https://github.com/jump-dev/Ipopt.jl
https://doi.org/10.21105/joss.06226

Usage
Enlsip.jl can be dowloaded from the Julia package manager by running the following command
into the REPL:

julia> using Pkg

julia> Pkg.add("Enlsip")

The package provides a basic interface for modeling optimization problems of the form (1), by
passing the residuals, constraints functions and dimensions of the problem. This is accomplished
by creating an instance of our CnlsModel structure. Users can also provide functions to compute
Jacobian matrices of residuals and constraints, or they can let the algorithm compute them
numerically using automatic differentiation2 (Griewank, 2003).

As a short tutorial, we consider the following problem (Hock & Schittkowski, 1980, problem
65):

min (𝑥1 − 𝑥2)2 +
1
9
(𝑥1 + 𝑥2 − 10)2 + (𝑥3 − 5)2

s.t. 48 − 𝑥2
1 − 𝑥2

2 − 𝑥2
3 ≥ 0

− 4.5 ≤ 𝑥𝑖 ≤ 4.5, 𝑖 = 1, 2
− 5 ≤ 𝑥3 ≤ 5,

(2)

and show how to use the package to model and solve problem (2):

using Enlsip

Dimensions of the problem

n = 3 # number of parameters

m = 3 # number of residuals

l = 1 # number of nonlinear inequality constraints

Residuals and Jacobian matrix associated

r(x::Vector) = [x[1] - x[2]; (x[1]+x[2]-10.0) / 3.0; x[3]-5.0]

jac_r(x::Vector) = [1. -1. 0; 1/3 1/3 0.; 0. 0. 1.]

Constraints (one nonlinear inequality and box constraints)

c(x::Vector) = [48.0 - x[1]^2-x[2]^2-x[3]^2]

jac_c(x::Vector) = [-2x[1] -2x[2] -2x[3]]

x_l = [-4.5, -4.5, -5.0]

x_u = [4.5, 4.5, 5.0]

Starting point

x0 = [-5.0, 5.0, 0.0]

Instantiate the model associated with the problem

model = Enlsip.CnlsModel(r, n, m; jacobian_residuals=jac_r, starting_point=x0,

ineq_constraints = c, jacobian_ineqcons=jac_c, nb_ineqcons = l,

x_low=x_l, x_upp=x_u)

Once a model has been instantiated, the solver function can be called.
2Backend used by default is ForwardDiff.jl

Borie et al. (2024). Enlsip.jl: A Julia optimization package to solve constrained nonlinear least-squares problems. Journal of Open Source Software,
9(97), 6226. https://doi.org/10.21105/joss.06226.

4

https://github.com/UncertainLab/Enlsip.jl
https://juliadiff.org/ForwardDiff.jl/stable/
https://doi.org/10.21105/joss.06226

Call of the `solve!` function

Enlsip.solve!(model)

After solving, there are available methods to get details about the conduct of the algorithm.
For instance, on the example presented above, calling Enlsip.solution(model) will return
the solution found.

The online documentation3 provides additional information on how to use the package and
examples with test problems from the literature.

Acknowledgements
The research has been supported by MITACS grants IT25656, IT28724, and IT36208. We
would also like to mention that the release of Enlsip.jl results from a close collaboration between
the University of Montreal and the Unit of Inflow and Load Forecasting of Hydro-Québec. The
work of Fabian Bastin is supported by the Natural Sciences and Engineering Research Council
of Canada [Discovery Grant 2022-04400].

References
Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to

numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Dennis Jr, J. E., Gay, D. M., & Walsh, R. E. (1981). An adaptive nonlinear least-squares
algorithm. ACM Transactions on Mathematical Software, 7 (3), 348–368. https://doi.org/
10.1145/355958.355965

Dennis Jr, J. E., & Schnabel, R. B. (1996). Numerical methods for unconstrained optimization
and nonlinear equations. SIAM. https://doi.org/10.1137/1.9781611971200

Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with performance
profiles. Mathematical Programming, Series A 91(2), 201–213. https://doi.org/10.1007/
s101070100263

Dunning, I., Huchette, J., & Lubin, M. (2017). JuMP: A modeling language for mathematical
optimization. SIAM Review, 59(2), 295–320. https://doi.org/10.1137/15M1020575

Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical optimization. Academic Press.
https://doi.org/10.1137/1.9781611975604

Grenier, M., Gagnon, J., Mercier, C., & Richard, J. (2006). Short-term load forecasting
at Hydro-Québec TransÉnergie. 2006 IEEE Power Engineering Society General Meeting.
https://doi.org/10.1109/PES.2006.1709029

Griewank, A. (2003). A mathematical view of automatic differentiation. Acta Numerica, 12,
321–398. https://doi.org/10.1017/S0962492902000132

Hock, W., & Schittkowski, K. (1980). Test examples for nonlinear programming codes (Second
edition, Vol. 187). Springer Berlin. https://doi.org/10.1007/978-3-642-48320-2

Lin, C.-J., & Moré, J. J. (1999). Newton’s method for large bound-constrained optimization
problems. SIAM Journal on Optimization, 9(4), 1100–1127. https://doi.org/10.1137/
S1052623498345075

Lindström, P., & Wedin, P. Å. (1988). Gauss-Newton based algorithms for constrained
nonlinear least squares problems. Technical Report S-901 87, Institute of Information
Processing, University of Umeå, Sweden.

3https://uncertainlab.github.io/Enlsip.jl

Borie et al. (2024). Enlsip.jl: A Julia optimization package to solve constrained nonlinear least-squares problems. Journal of Open Source Software,
9(97), 6226. https://doi.org/10.21105/joss.06226.

5

https://uncertainlab.github.io/Enlsip.jl/stable
https://github.com/UncertainLab/Enlsip.jl
https://doi.org/10.1137/141000671
https://doi.org/10.1145/355958.355965
https://doi.org/10.1145/355958.355965
https://doi.org/10.1137/1.9781611971200
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1137/15M1020575
https://doi.org/10.1137/1.9781611975604
https://doi.org/10.1109/PES.2006.1709029
https://doi.org/10.1017/S0962492902000132
https://doi.org/10.1007/978-3-642-48320-2
https://doi.org/10.1137/S1052623498345075
https://doi.org/10.1137/S1052623498345075
https://uncertainlab.github.io/Enlsip.jl
https://doi.org/10.21105/joss.06226

Lukšan, L., & Vlček, J. (1999). Sparse and partially separable test problems for unconstrained
and equality constrained optimization. Technical Report 767, Institute of Computer Science,
Academy of Sciences of the Czech Republic, Prague. http://hdl.handle.net/11104/0123965

Migot, T., Orban, D., Siqueira, A. S., & contributors. (2023). JSOSolvers.jl: JuliaSmoothOp-
timizers optimization solvers (Version 0.11.0). https://doi.org/10.5281/zenodo.3991143

Nocedal, J., & Wright, S. J. (2006). Numerical optimization (Second edition). Springer.
https://doi.org/10.1007/978-0-387-40065-5

Orban, D., & Siqueira, A. S. (2020). A regularization method for constrained nonlinear
least squares. Computational Optimization and Applications, 76(3), 961–989. https:
//doi.org/10.1007/s10589-020-00201-2

Orban, D., Siqueira, A. S., & contributors. (2020). NLPModels.jl: Data structures for
optimization models. https://github.com/JuliaSmoothOptimizers/NLPModels.jl. https:
//doi.org/10.5281/zenodo.2558627

Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Programming,
Series A, 106, 25–57. https://doi.org/10.1007/s10107-004-0559-y

Borie et al. (2024). Enlsip.jl: A Julia optimization package to solve constrained nonlinear least-squares problems. Journal of Open Source Software,
9(97), 6226. https://doi.org/10.21105/joss.06226.

6

http://hdl.handle.net/11104/0123965
https://doi.org/10.5281/zenodo.3991143
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/s10589-020-00201-2
https://doi.org/10.1007/s10589-020-00201-2
https://github.com/JuliaSmoothOptimizers/NLPModels.jl
https://doi.org/10.5281/zenodo.2558627
https://doi.org/10.5281/zenodo.2558627
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.21105/joss.06226

	Summary
	Statement of need
	Method
	From Fortran77 to Julia
	Numerical experiments
	Other nonlinear least-squares packages

	Usage
	Acknowledgements
	References

