
Koverage: Read-coverage analysis for massive
(meta)genomics datasets

Michael J. Roach 1,2¶, Bradley J. Hart 3, Sarah J. Beecroft 4, Bhavya
Papudeshi 1, Laura K. Inglis 1, Susanna R. Grigson 1, Vijini
Mallawaarachchi 1, George Bouras 5,6, and Robert A. Edwards 1

1 Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, SA, Australia 2
Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of
Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia 3 Health and
Biomedical Innovation, Clinical and Health Sciences, University of South Australia, SA, Australia 4
Pawsey Supercomputing Research Centre, Kensington, WA, Australia 5 Adelaide Medical School, Faculty
of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia 6 The Department
of Surgery – Otolaryngology Head and Neck Surgery, Central Adelaide Local Health Network, Adelaide,
SA, Australia ¶ Corresponding author

DOI: 10.21105/joss.06235

Software
• Review
• Repository
• Archive

Editor: Charlotte Soneson
Reviewers:

• @lparsons
• @telatin

Submitted: 30 November 2023
Published: 27 February 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Genomes of organisms are constructed by assembling sequence reads from whole genome
sequencing. It is useful to determine sequence read-coverage of genome assemblies, for
instance identifying duplication or deletion events, identifying related contigs for binning
metagenomes (Mallawaarachchi et al., 2021; Mallawaarachchi & Lin, 2022), or analysing
taxonomic compositions of metagenomes (Wu et al., 2023). Although calculating read-
coverage is a routine task, it typically involves several complete read and write operations (I/O
operations). This is not a problem for small datasets, but can be a significant bottleneck for
very large datasets. Koverage reduces I/O burden as much as possible to enable maximum
scalability. Koverage includes a kmer-based method that significantly reduces the computational
complexity for very large reference genomes. Koverage uses Snakemake (Mölder et al.,
2021), providing out-of-the-box support for HPC and cloud environments. It utilises the
Snaketool (Roach, Pierce-Ward, et al., 2022) command line interface, and is installable with
PIP or Conda for maximum ease of use. Source code and documentation are available at
https://github.com/beardymcjohnface/Koverage.

Statement of need
With the current state of sequencing technologies, it is trivial to generate terabytes of sequencing
data for hundreds or even thousands of samples. Databases such as the Sequence Read Archive
and the European Nucleotide Archive, containing nearly 100 petabytes combined of sequencing
data, are constantly being mined and reanalysed in bioinformatics analyses. Memory and I/O
bottlenecks lead to under-utilisation of CPUs, and computational inefficiencies at such scales
waste thousands of dollars in compute costs. I/O heavy processes in large parallel batches
can result in significantly impaired performance. This is especially true for HPC clusters with
shared file storage, or for cloud environments using cost-efficient bucket storage.

While there are existing tools for performing coverage calculations, they are not optimised
for deployment at large scales, or when analysing large reference files. They require several
complete I/O operations of the sequencing data in order to generate coverage statistics.
Mapping to very large genomes requires large amounts of memory, or alternatively, aligning

Roach et al. (2024). Koverage: Read-coverage analysis for massive (meta)genomics datasets. Journal of Open Source Software, 9(94), 6235.
https://doi.org/10.21105/joss.06235.

1

https://orcid.org/0000-0003-1488-5148
https://orcid.org/0000-0001-8110-2460
https://orcid.org/0000-0002-3935-2279
https://orcid.org/0000-0001-5359-3100
https://orcid.org/0000-0001-7919-8563
https://orcid.org/0000-0003-4738-3451
https://orcid.org/0000-0002-2651-8719
https://orcid.org/0000-0002-5885-4186
https://orcid.org/0000-0001-8383-8949
https://doi.org/10.21105/joss.06235
https://github.com/openjournals/joss-reviews/issues/6235
https://github.com/beardymcjohnface/Koverage
https://doi.org/10.5281/zenodo.10633263
http://csoneson.github.io/
https://orcid.org/0000-0003-3833-2169
https://github.com/lparsons
https://github.com/telatin
https://creativecommons.org/licenses/by/4.0/
https://github.com/beardymcjohnface/Koverage
https://doi.org/10.21105/joss.06235


reads in chunks creating more I/O operations. Moving I/O operations into memory, for example
via tempfs may alleviate I/O bottlenecks. However, this is highly system-dependent and will
exacerbate memory bottlenecks.

Koverage addresses these I/O bottlenecks by eliminating the sorting, reading, and writing
of intermediate alignments. Koverage includes a kmer-based implementation to eliminate
memory bottlenecks from screening large genomes. Koverage can be utilised as is, but has
also been incorporated into the metagenomics pipelines Hecatomb (Roach, Beecroft, et al.,
2022), Phables (Mallawaarachchi et al., 2023), and Reneo (Mallawaarachchi, 2023).

Implementation
Koverage is written in Snakemake (Mölder et al., 2021) and Python, and uses the Snaketool
(Roach, Pierce-Ward, et al., 2022) command line interface (CLI). Snaketool takes the user input
command line arguments to build a runtime config file, generate the Snakemake command,
and run the pipeline. Any unrecognised arguments are assumed to be Snakemake arguments
and are added to the Snakemake command. For cluster- or cloud-based execution, users are
encouraged to generate a Snakemake profile, and Koverage is compatible with Snakemake’s
Cookiecutter (Greenfeld, 2013) template profiles. The only required inputs are the reference
FASTA-format file (--ref), and the sample reads (--reads).

Sample parsing
Koverage will parse reads (--reads) using MetaSnek fastq_finder (Roach, 2023). Users
supply either a directory of sequencing reads, or a tab-separated values (TSV) file of sample
names and corresponding read filepaths. For a directory, sample names and read file pairs will be
inferred from the file names. For a TSV file, sample names and filepaths are read from the file.
More information and examples are available at https://gist.github.com/beardymcjohnface/
bb161ba04ae1042299f48a4849e917c8

Mapping-based coverage
This is the default method for calculating coverage statistics. Reads are mapped sample-by-
sample to the reference genome using Minimap2 (Li, 2018). The alignments are piped to a
script that collects the counts per contig and total counts per sample. Koverage uses mapping
coordinates to collect read counts for bins or windows along each contig. This allows for a
fast approximation of the coverage of each contig by at least one read (hitrate), and of the
evenness of coverage (variance) for each contig. The final counts, mean, median, hitrate,
and variance are written to a Python pickle. A second script calculates the Reads Per Million
(RPM), Reads Per Kilobase Million (RPKM), Reads Per Kilobase (RPK), and Transcripts Per
Million (TPM) like so:

RPM = 106×𝑁
𝑇

RPKM = 106×𝑁
𝑇×𝐿

RPK = 𝑁
𝐿

TPM = 106×𝑅𝑃𝐾
𝑅

Where:

• N = number of reads mapped to the contig
• T = Total number of mapped reads for that sample
• L = length of contig in kilobases

Roach et al. (2024). Koverage: Read-coverage analysis for massive (meta)genomics datasets. Journal of Open Source Software, 9(94), 6235.
https://doi.org/10.21105/joss.06235.

2

https://gist.github.com/beardymcjohnface/bb161ba04ae1042299f48a4849e917c8
https://gist.github.com/beardymcjohnface/bb161ba04ae1042299f48a4849e917c8
https://doi.org/10.21105/joss.06235


• R = sum of all RPK values for that sample

To generate fast estimations for mean, median, hitrate, and variance, Koverage first collects the
counts of the start coordinates of mapped reads within bins (or windows) across each contig
(Figure 1). The user can customise bin width (default 100 bp); mean and median counts are
comparable to read-depth when the binwidth is equal to the library’s read length. Variance is
calculated directly as the standard variance of the bin counts. The hitrate is calculated as the
fraction of bins greater than zero.

Figure 1: Windowed-coverage counts. Counts of start coordinates of mapped reads are collected for each
bin across a contig. The counts array is used to calculate estimates for coverage hitrate and variance.

The coverage from all samples are collated, and a summary for each contig coverage by all
samples is calculated. A summary HTML report is generated which includes interactive graphs
and tables for both the per sample coverage, and the combined coverage from all samples.
We utilized Datapane (Datapane Team, 2023) to embed a combined bar and line chart from
Plotly (Plotly Technologies Inc, 2023) and an interactive table displaying the results.

Kmer-based coverage
Mapping to very large reference genomes can place considerable strain on computer resources.
Koverage offers a kmer-based approach to estimating coverage. First, the reference genome is
processed and kmers are sampled evenly across each contig. The user can customise kmer
size, sampling interval, and minimum and maximum number of kmers to sample per contig.
Jellyfish (Marçais & Kingsford, 2011) databases are created for each sample. The sampled
reference kmers are queried against the sample kmer database. The kmer counts, and a kmer
count array is created for each contig. The sum, mean, and median are calculated directly
from the count array. Hitrate is calculated as the number of kmer counts > 0 divided by the
total number of kmers queried. Variance is highly sensitive to large outliers, and kmer counts
are especially prone to large outliers. Therefore, variance is calculated as the standard variance
of the lowest 95 % of kmer counts.

CoverM wrapper
Koverage includes a wrapper for the popular CoverM (Woodcroft & Newell, 2017) tool. CoverM
can parse aligned and sorted reads in BAM format. It can also align reads with Minimap2,
saving the sorted alignments in a temporary filesystem (tempfs), and then process the aligned
and sorted reads from tempfs. When a large enough tempfs is available, this method of running

Roach et al. (2024). Koverage: Read-coverage analysis for massive (meta)genomics datasets. Journal of Open Source Software, 9(94), 6235.
https://doi.org/10.21105/joss.06235.

3

https://doi.org/10.21105/joss.06235


CoverM is extremely fast. However, if the tempfs is insufficient for storing the alignments,
they are instead written to and read from regular disk storage which can be a significant I/O
bottleneck. This wrapper in Koverage will generate alignments with Minimap2, sort and save
them in BAM format with SAMtools (Danecek et al., 2021), and run CoverM on the resulting
BAM file. CoverM is currently not available for macOS and as such, this wrapper will only run
on Linux systems.

Benchmarks
We tested Koverage’s methods on the Pawsey Supercomputing Research Centre’s Setonix HPC
(commissioned in 2023) (Pawsey Supercomputing Research Centre, 2023) using a small coral
metagenome dataset (Lima et al., 2023) consisting of 34 samples, a 360 Mbp metagenome
assembly, and 9.1 GB of sequencing reads. This represents a typical metagenomics application in
optimal conditions. Table 1 shows that CoverM is slightly faster than the default mapping-based
method in spite of the extra read and write operations.

Table 1: Coral metagenome benchmarks with high performance I/O

Method
Runtime
(HH:MM:SS)

CPU Walltime
(HH:MM:SS)

Mean load
(%)

Peak memory
(Gb)

Map 00:40:34 01:49:38 270 4.6
Kmer 02:20:58 00:51:40 37 4.2
CoverM 00:31:49 01:12:17 227 7.4

We repeated the above benchmarking with Koverage directly reading and writing to Pawsey’s
S3 network bucket storage mounted using s3fs-fuse. Unlike the local scratch partition, this
represents a scenario with a significant I/O bottleneck. Table 2 shows that while all methods
are slower, Koverage’s mapping and kmer methods perform much faster than the CoverM
wrapper. The poor performance of the CoverM wrapper is entirely the result of generating the
alignment BAM files, accounting for 85% of the overall runtime, rather than CoverM itself.

Table 2: Coral metagenome benchmarks with bottlenecked I/O

Method
Runtime
(HH:MM:SS)

CPU Walltime
(HH:MM:SS)

Mean load
(%)

Peak memory
(Gb)

Map 03:34:15 01:49:01 50 4.6
Kmer 03:18:33 01:13:53 14 4.6
CoverM 11:13:39 01:32:10 22 7.3

Acknowledgments
This work was supported by resources provided by the Pawsey Supercomputing Research Centre
with funding from the Australian Government and the Government of Western Australia. The
support provided by Flinders University for HPC research resources is acknowledged. This
work was supported by an award from NIH NIDDK RC2DK116713 and an award from the
Australian Research Council DP220102915.

References
Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A.,

Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools
and BCFtools. GigaScience, 10(2). https://doi.org/10.1093/gigascience/giab008

Roach et al. (2024). Koverage: Read-coverage analysis for massive (meta)genomics datasets. Journal of Open Source Software, 9(94), 6235.
https://doi.org/10.21105/joss.06235.

4

https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.21105/joss.06235


Datapane Team. (2023). Datapane (0.16.5) [Software]. https://www.datapane.com.

Greenfeld, A. R. (2013). Cookiecutter: A cross-platform command-line utility that creates
projects from cookiecutters (project templates), e.g. Python package projects, C projects.
https://github.com/cookiecutter/cookiecutter/.

Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18),
3094–3100. https://doi.org/10.1093/bioinformatics/bty191

Lima, L. F., Alker, A. T., Papudeshi, B., Morris, M. M., Edwards, R. A., de Putron, S. J., &
Dinsdale, E. A. (2023). Coral and Seawater Metagenomes Reveal Key Microbial Functions
to Coral Health and Ecosystem Functioning Shaped at Reef Scale. Microbial Ecology.
https://doi.org/10.1007/s00248-022-02094-6

Mallawaarachchi, V. (2023). reneo: Unraveling Viral Genomes from Metagenomes. https:
//github.com/Vini2/reneo.

Mallawaarachchi, V., & Lin, Y. (2022). Accurate Binning of Metagenomic Contigs Using
Composition, Coverage, and Assembly Graphs. Journal of Computational Biology, 29(12),
1357–1376. https://doi.org/10.1089/cmb.2022.0262

Mallawaarachchi, V., Roach, M. J., Decewicz, P., Papudeshi, B., Giles, S. K., Grigson, S. R.,
Bouras, G., Hesse, R. D., Inglis, L. K., Hutton, A. L. K., Dinsdale, E. A., & Edwards, R.
A. (2023). Phables: from fragmented assemblies to high-quality bacteriophage genomes.
Bioinformatics, 39(10), btad586. https://doi.org/10.1093/bioinformatics/btad586

Mallawaarachchi, V., Wickramarachchi, A. S., & Lin, Y. (2021). Improving metagenomic
binning results with overlapped bins using assembly graphs. Algorithms for Molecular
Biology, 16(1), 3. https://doi.org/10.1186/s13015-021-00185-6

Marçais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting
of occurrences of k-mers. Bioinformatics, 27(6), 764–770. https://doi.org/10.1093/
bioinformatics/btr011

Mölder, F., Jablonski, K., Letcher, B., Hall, M., Tomkins-Tinch, C., Sochat, V., Forster, J.,
Lee, S., Twardziok, S., Kanitz, A., Wilm, A., Holtgrewe, M., Rahmann, S., Nahnsen, S.,
& Köster, J. (2021). Sustainable data analysis with Snakemake. F1000Research, 10(33).
https://doi.org/10.12688/f1000research.29032.1

Pawsey Supercomputing Research Centre. (2023). Setonix (HPC). Pawsey Supercomputing
Research Centre. https://support.pawsey.org.au/documentation/display/US/Setonix+
Guides

Plotly Technologies Inc. (2023). Plotly (5.15.0) [Software]. https://plot.ly.

Roach, M. J. (2023). MetaSnek: Misc functions for metagenomic pipelines. https://github.
com/beardymcjohnface/metasnek.

Roach, M. J., Beecroft, S. J., Mihindukulasuriya, K. A., Wang, L., Paredes, A., Henry-
Cocks, K., Lima, L. F. O., Dinsdale, E. A., Edwards, R. A., & Handley, S. A. (2022).
Hecatomb: An End-to-End Research Platform for Viral Metagenomics. bioRxiv. https:
//doi.org/10.1101/2022.05.15.492003

Roach, M. J., Pierce-Ward, N. T., Suchecki, R., Mallawaarachchi, V., Papudeshi, B., Handley,
S. A., Brown, C. T., Watson-Haigh, N. S., & Edwards, R. A. (2022). Ten simple rules and
a template for creating workflows-as-applications. PLOS Computational Biology, 18(12),
1–9. https://doi.org/10.1371/journal.pcbi.1010705

Woodcroft, B., & Newell, R. (2017). WWOOD/coverm: Read coverage calculator for
metagenomics. https://github.com/wwood/CoverM.

Roach et al. (2024). Koverage: Read-coverage analysis for massive (meta)genomics datasets. Journal of Open Source Software, 9(94), 6235.
https://doi.org/10.21105/joss.06235.

5

https://www.datapane.com
https://github.com/cookiecutter/cookiecutter/
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1007/s00248-022-02094-6
https://github.com/Vini2/reneo
https://github.com/Vini2/reneo
https://doi.org/10.1089/cmb.2022.0262
https://doi.org/10.1093/bioinformatics/btad586
https://doi.org/10.1186/s13015-021-00185-6
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.12688/f1000research.29032.1
https://support.pawsey.org.au/documentation/display/US/Setonix+Guides
https://support.pawsey.org.au/documentation/display/US/Setonix+Guides
https://plot.ly
https://github.com/beardymcjohnface/metasnek
https://github.com/beardymcjohnface/metasnek
https://doi.org/10.1101/2022.05.15.492003
https://doi.org/10.1101/2022.05.15.492003
https://doi.org/10.1371/journal.pcbi.1010705
https://github.com/wwood/CoverM
https://doi.org/10.21105/joss.06235


Wu, E., Mallawaarachchi, V., Zhao, J., Yang, Y., Liu, H., Wang, X., Shen, C., Lin, Y., & Qiao, L.
(2023). Contigs directed gene annotation (ConDiGA) for accurate protein sequence database
construction in metaproteomics. bioRxiv. https://doi.org/10.1101/2023.04.19.537311

Roach et al. (2024). Koverage: Read-coverage analysis for massive (meta)genomics datasets. Journal of Open Source Software, 9(94), 6235.
https://doi.org/10.21105/joss.06235.

6

https://doi.org/10.1101/2023.04.19.537311
https://doi.org/10.21105/joss.06235

	Summary
	Statement of need
	Implementation
	Sample parsing
	Mapping-based coverage
	Kmer-based coverage
	CoverM wrapper
	Benchmarks
	Acknowledgments
	References

