
Cellpy – an open-source library for processing and
analysis of battery testing data
Julia Wind 1, Asbjørn Ulvestad 1, Muhammad Abdelhamid 1, and Jan
Petter Mæhlen 1

1 Institute for Energy Technology, 2007 Kjeller, Norway
DOI: 10.21105/joss.06236

Software
• Review
• Repository
• Archive

Editor: Mojtaba Barzegari
Reviewers:

• @MaximevdHeijden
• @TomTranter
• @ma-sadeghi

Submitted: 24 October 2023
Published: 02 May 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Recent years have witnessed an exponential increase in battery research, driven by the need to
develop efficient and sustainable energy storage systems. One of the main tools in battery
research is battery cycling experiments, providing insights into the performance, lifetime and
quality of the battery. Due to the large variety of battery testing equipment and the resulting
multitude of different and often proprietary data formats, combined with the large number of
parameters involved, managing and processing battery testing data has often been a difficult
and tedious task.

The Python library cellpy assists in solving these problems by

1. providing tools to read different data formats,
2. converting those into one common data format that also includes relevant battery-specific

metadata, and
3. providing a data structure equipped with a set of methods that helps the user to easily

perform simple and in-depth analyses of both single data sets and collections of data
sets.

Statement of need
Typically, a battery-testing data set consists of simple time series data with voltage, current and
capacity. Unfortunately, data from different equipment are measured and handled in different
ways and stored in different, often proprietary, formats. Consequently, a direct and meaningful
comparison of several cells tested under a variety of conditions can be challenging and requires
more advanced data handling methodologies. Several open-source libraries focus on battery test
data extraction. However, most of them are dedicated to specific battery testing equipment:
notably galvani (Echemdata, 2007) parses the proprietary BioLogic format, neware_reader
(Beyonder et al., 2020) parsing several versions of Neware data, and galv (formerly Galvanalyser)
(Battery-Intelligence-Lab, 2020) supporting Maccor, Ivium and BioLogic formats. In addition,
the Battery Evaluation and Early Prediction (BEEP) library (Herring et al., 2020) provides an
interface for parsing text-based data from several instruments. However, the target audience
for BEEP seems to be machine learning researchers, focusing on handling and preparing large
datasets, while cellpy provides tools for more in-depth data handling and analysis for battery
researchers.

cellpy provides powerful and versatile tools for the simple and efficient handling of battery
testing data originating from different battery cell testers, all the way from data collection to
data analysis and visualisation, ensuring consistency, accuracy and comparability. cellpy can
directly parse the data from most common commercial battery testers (Arbin, Maccor, PEC,
Neware, BioLogic), in addition to offering full flexibility by allowing the user to provide other
file format specifications (in YAML format). The data is converted into and saved in a common
format, accommodating not only data from diverse testers but also thoughtfully embedding

Wind et al. (2024). Cellpy – an open-source library for processing and analysis of battery testing data. Journal of Open Source Software, 9(97),
6236. https://doi.org/10.21105/joss.06236.

1

https://orcid.org/0000-0001-6325-4727
https://orcid.org/0000-0001-9771-4808
https://orcid.org/0000-0002-1666-6398
https://orcid.org/0000-0001-7662-4707
https://doi.org/10.21105/joss.06236
https://github.com/openjournals/joss-reviews/issues/6236
https://github.com/jepegit/cellpy
https://doi.org/10.5281/zenodo.11047004
http://mbarzegary.github.io/
https://orcid.org/0000-0002-1456-0610
https://github.com/MaximevdHeijden
https://github.com/TomTranter
https://github.com/ma-sadeghi
https://creativecommons.org/licenses/by/4.0/
https://www.biologic.net/
https://newarebattery.com/
http://www.maccor.com/
https://www.ivium.com/
http://www.arbin.com/
https://www.peccorp.com/battery-testing-solutions/
https://doi.org/10.21105/joss.06236


battery-specific metadata (e.g., step-types, type of cell, type of chemistry, electrode properties,
etc.). This makes subsequent data handling considerably easier and proves invaluable in
interpreting and comparing results across tests and conditions. In addition to translating data
to a common format, cellpy has a range of utilities for studying and analysing the data. These
include methods for the extraction of key characteristics from tests, cell comparison, plotting
and statistical analysis, as well as advanced tools such as incremental-capacity analysis (ICA,
dQ/dV), OCV relaxation analysis and batch processing of results from many battery tests
(Andersen et al., 2019; Huld et al., 2023; Spitthoff et al., 2023; Ulvestad et al., 2020).

The cellpy library provides a valuable toolset and has been in frequent use for both everyday
and advanced tasks in battery research. The ability to effortlessly import and process the data
through a simple but highly flexible API allows for quick and simple comparison of different cells.
At the same time, cellpy serves as an excellent starting point for researchers leaning towards
advanced analysis: cellpy can automatically convert data with different units, summarize and
perform statistical evaluations all the way down to the individual cycle and step level, while
giving the user fine-grained control of the behaviour through setting of parameters or directly
by using a more advanced, deeper API. This eases further use of the data, e.g., as features
for machine learning algorithms, and promotes reproducibility and traceability throughout the
entire process.

Implementation and architecture
cellpy is implemented in Python and can be used as either a library within Python scripts,
or as a stand-alone application for analysing battery cell test data. Internally, cellpy utilises
the rich ecosystem of scientific tools available for Python. In particular, cellpy uses pandas

DataFrames as the “storage containers” for the collected data within the cellpy Data object.
This offers full flexibility and makes it easy for the user to apply advanced methods, analyses
or transformations to the data in addition to the features implemented in cellpy.

The core of cellpy is the CellpyCell object (see Figure 1) that contains both the data (stored in
the Data object) as well as central methods required to read, process and store battery testing
data. The CellpyCell provides the appropriate interface and coordination of the resources
needed, such as loading configurations (e.g default reader, default raw-data location), selecting
readers for different data formats and exporters for saving the data.

Wind et al. (2024). Cellpy – an open-source library for processing and analysis of battery testing data. Journal of Open Source Software, 9(97),
6236. https://doi.org/10.21105/joss.06236.

2

https://doi.org/10.21105/joss.06236


Figure 1: Illustration of the core object within cellpy, the CellpyCell.

The CellpyCell Data object stores both the battery test data as well as the corresponding
metadata (see Figure 2). In addition to the central DataFrame containing the raw data (raw),
the DataFrames steps and summary provide step- (e.g., maximum current, mean voltage,
type-of-step vs. step number) and cycle-based (e.g., gravimetric charge capacity, coulombic
efficiency, C-rates vs. cycle number) summaries and statistics respectively.

Wind et al. (2024). Cellpy – an open-source library for processing and analysis of battery testing data. Journal of Open Source Software, 9(97),
6236. https://doi.org/10.21105/joss.06236.

3

https://doi.org/10.21105/joss.06236


Figure 2: Summary of the types of contents in a CellpyCell Data object.

The most common data processing routines, such as extraction of charge/discharge voltage
curves in different formats or selecting data for specified step-types, are implemented as
methods on the CellpyCell object. In addition, the cellpy library also consists of a rich set
of utilities (Figure 3) that can be used for further processing the data, both individually and
within batch routines. Utility functions include e.g., ICA tools, assisting in creating dQ/dV
graphs (employing different data-smoothing algorithms), or tools for OCV relaxation analysis.

Wind et al. (2024). Cellpy – an open-source library for processing and analysis of battery testing data. Journal of Open Source Software, 9(97),
6236. https://doi.org/10.21105/joss.06236.

4

https://doi.org/10.21105/joss.06236


Figure 3: The cellpy library contains multiple utilities that assists in data analysis. A utility can work
on (A) a single CellpyCell object, or (B) a set of CellpyCell objects such as the Batch utility that helps
the user in automating and comparing results from many data sets.

The cellpy-file format (usually stored in HDF5 format) contains all the data contained in the
Data object together with additional relevant metadata, including information about the file
version.

Acknowledgements
The development of cellpy was supported by the Research Council of Norway through the
ENERGIX Projects No.280985 (“KPN Silicon on the Road”), No.324077 (“KSP MoreIsLess”),
No.320760 (“KSP SecondLife”), No.326866 (“KSP LongLife”), No.344317 (“KSP CellMap),
and FME-MoZEES (project No. 257653), co-sponsored by the Research Council of Norway
and 40 partners from research, industry, and the public sector. The development was also
supported through the EU-funded SIMBA project (HORIZON 2020, GA No. 963542).

The authors are thankful to the numerous inputs and comments from our colleagues and
collaborators, and in particular Dr. Preben J.S. Vie and Dr. Martin Kirkengen.

References
Andersen, H. F., Foss, C. E. L., Voje, J., Tronstad, R., Mokkelbost, T., Vullum, P. E.,

Ulvestad, A., Kirkengen, M., & Mæhlen, J. P. (2019). Silicon-carbon composite anodes
from industrial battery grade silicon. Scientific Reports, 9(1), 14814. https://doi.org/10.
1038/s41598-019-51324-4

Battery-Intelligence-Lab. (2020). Galv. In GitHub repository. GitHub. https://github.com/
Battery-Intelligence-Lab/galv

Wind et al. (2024). Cellpy – an open-source library for processing and analysis of battery testing data. Journal of Open Source Software, 9(97),
6236. https://doi.org/10.21105/joss.06236.

5

https://doi.org/10.1038/s41598-019-51324-4
https://doi.org/10.1038/s41598-019-51324-4
https://github.com/Battery-Intelligence-Lab/galv
https://github.com/Battery-Intelligence-Lab/galv
https://doi.org/10.21105/joss.06236


Beyonder, Corvus Energy, & IFE. (2020). Neware reader. In GitHub repository. GitHub.
https://github.com/FTHuld/neware_reader

Echemdata. (2007). Galvani. In GitHub repository. GitHub. https://github.com/echemdata/
galvani

Herring, P., Gopal, C. B., Aykol, M., Montoya, J. H., Anapolsky, A., Attia, P. M., Gent, W.,
Hummelshøj, J. S., Hung, L., Kwon, H.-K., Moore, P., Schweigert, D., Severson, K. A.,
Suram, S., Yang, Z., Braatz, R. D., & Storey, B. D. (2020). BEEP: A python library for
battery evaluation and early prediction. SoftwareX, 11, 100506. https://doi.org/10.1016/j.
softx.2020.100506

Huld, F. T., Mæhlen, J. P., Keller, C., Lai, S. Y., Eleri, O. E., Koposov, A. Y., Yu, Z., & Lou, F.
(2023). Revealing silicon’s delithiation behaviour through empirical analysis of galvanostatic
charge and discharge curves. Batteries, 9(5). https://doi.org/10.3390/batteries9050251

Spitthoff, L., Vie, P. J. S., Wahl, M. S., Wind, J., & Burheim, O. S. (2023). Incremental
capacity analysis (dQ/dV) as a tool for analysing the effect of ambient temperature and
mechanical clamping on degradation. Journal of Electroanalytical Chemistry, 944, 117627.
https://doi.org/10.1016/j.jelechem.2023.117627

Ulvestad, A., Reksten, A. H., Andersen, H. F., Carvalho, P. A., Jensen, I. J. T., Nagell,
M. U., Mæhlen, J. P., Kirkengen, M., & Koposov, A. Y. (2020). Crystallinity of silicon
nanoparticles: Direct influence on the electrochemical performance of lithium ion battery
anodes. ChemElectroChem, 7 (21), 4349–4353. https://doi.org/10.1002/celc.202001108

Wind et al. (2024). Cellpy – an open-source library for processing and analysis of battery testing data. Journal of Open Source Software, 9(97),
6236. https://doi.org/10.21105/joss.06236.

6

https://github.com/FTHuld/neware_reader
https://github.com/echemdata/galvani
https://github.com/echemdata/galvani
https://doi.org/10.1016/j.softx.2020.100506
https://doi.org/10.1016/j.softx.2020.100506
https://doi.org/10.3390/batteries9050251
https://doi.org/10.1016/j.jelechem.2023.117627
https://doi.org/10.1002/celc.202001108
https://doi.org/10.21105/joss.06236

	Summary
	Statement of need
	Implementation and architecture
	Acknowledgements
	References

