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Summary
LabelProp is a tool that provides a semi-automated method to segment 3D medical images
with multiple labels. It is a convenient implementation of our peer-reviewed method designed
to assist medical professionals in segmenting musculoskeletal structures on scans based on a
small number of annotated slices (Decaux et al., 2023). LabelProp leverages deep learning
techniques, but can be used without a training set. It is available as a PyPi package and offers
both a command-line interface (CLI) and an API. Additionally, LabelProp provides two plugins,
namely ‘napari-labelprop’ and ‘napari-labelprop-remote’, which facilitate training and inference
on a single scan within the multi-dimensional viewer Napari. It is available on GitHub with
pretrained weights (https://github.com/nathandecaux/napari-labelprop)

Statement of need
Segmenting musculoskeletal structures from MR images is crucial for clinical research, diagnosis,
and treatment planning. However, challenges arise from the limited availability of annotated
datasets, particularly in rare diseases or pediatric cohorts (Conze et al., 2020). While manual
segmentation ensures accuracy, it is labor-intensive and prone to observer variability (Vădineanu
et al., 2022). Existing semi-automatic methods based on point and scribbles require minimal
interactions but often lack reproducibility (Chanti et al., 2021; Lee & Jeong, 2020; Sakinis et
al., 2019; Zhang et al., 2021).

LabelProp addresses these challenges with a novel deep registration-based label propagation
method. This approach efficiently adapts to various musculoskeletal structures, leveraging
image intensity and muscle shape for improved segmentation accuracy.

A key innovation of LabelProp is its minimal reliance on manual annotations. Demonstrating
the capability for accurate 3D segmentation from as few as three annotated slices per MR
volume (Decaux et al., 2023), it significantly reduces the workload for medical professionals
and is particularly beneficial where extensive annotated data is scarce. This feature aligns with
the method of slice-to-slice registration (Ogier et al., 2017), but is further enhanced by deep
learning techniques.

Similar to VoxelMorph, the underlying model in this approach learns to generate deformations
without supervision (Balakrishnan et al., 2019). However, it specifically focuses on aligning
adjacent 2D slices and can be trained directly on the scan that needs to be segmented or on a
complete dataset for optimal results. When training the model with at least two annotations
for a scan, a constraint is added to ensure that the generated deformations are consistent from
both an image and segmentation perspective. Additionally, weak annotations in the form of

Decaux et al. (2025). LabelProp: A semi-automatic segmentation tool for 3D medical images. Journal of Open Source Software, 10(109), 6284.
https://doi.org/10.21105/joss.06284.

1

https://orcid.org/0000-0002-6911-6373
https://orcid.org/0000-0003-2214-3654
https://orcid.org/0000-0001-7467-759X
https://orcid.org/0000-0003-3924-6035
https://orcid.org/0000-0001-5532-2208
https://orcid.org/0000-0002-4950-1696
https://orcid.org/0000-0001-9837-7487
https://doi.org/10.21105/joss.06284
https://github.com/openjournals/joss-reviews/issues/6284
https://github.com/nathandecaux/labelprop
https://doi.org/10.5281/zenodo.14674566
https://orcid.org/0000-0003-4891-6256
https://github.com/WangKehan573
https://github.com/animikhaich
https://github.com/tensorsofthewall
https://creativecommons.org/licenses/by/4.0/
https://github.com/nathandecaux/napari-labelprop
https://doi.org/10.21105/joss.06284


scribbles can be provided during training on intermediate slices to provide additional guidance
for propagation. Examples of manual annotations and scribbles are shown in Fig. 1.

During the inference phase, each annotation is propagated to its nearest neighboring annotation,
resulting in two predictions for each intermediate slice from different source annotations. The
label fusion process involves weighting each prediction based on their distance to the source
annotation or an estimate of the registration accuracy. Importantly, the propagation method is
label-agnostic, allowing for the simultaneous segmentation of multiple structures, regardless of
whether they are manually annotated on the same slice or not.
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Figure 1: Example of propagation from 3 manual annotations of the right deltoid muscle in an MRI,
in the axial plane. Optional scribbles (yellow) can be provided, without plane constraints, for further
guidance.

State of the field
In a previous study, we evaluated our method against various approaches in a shoulder muscle
MRI dataset and the publicly accessible MyoSegmenTUM dataset. Specifically, we focused on
intra-subject segmentation using only 3 annotated slices (Decaux et al., 2023). The reference
methods were the ITKMorphologicalContourInterpolation approach (Albu et al., 2008), a
well-known implementation of UNet (Ronneberger et al., 2015), and a semi-automatic image
sequence segmentation approach (Jabri et al., 2020). Our results showed that in this particular
configuration, our method (Labelprop) outperformed all of these methods. Additionally, our
method also demonstrated competitive performance compared to a leave-one-out trained UNet
for the shoulder dataset (Conze et al., 2020).

Software Details
LabelProp is composed of three main components: labelprop, napari-labelprop, and napari-
labelprop-remote. The labelprop algorithm is accompanied by a command-line interface (CLI)
and a REST API. The CLI enables unsupervised pretraining or training with sparse annotations
on a dataset, and inference on a single volume. The API provides access to training with
annotations and inference on a single subject via HTTP requests. It is used in the napari-
labelprop-remote plugin, but can be adapted to other extendable viewer/segmentation tools
such as 3D Slicer or MITK. The napari-labelprop plugin brings the labelprop algorithm into the
interactive Napari platform, allowing users to conduct both the training and inference stages of
label propagation directly within the Napari environment. The napari-labelprop-remote plugin
extends the functionality of napari-labelprop, allowing users to perform training and inference
on a remote server through the labelprop API. These tools provide a versatile and user-friendly
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toolkit for 3D image segmentation, offering the flexibility to work locally or remotely, and
leveraging deep learning to efficiently generate 3D delineations from slice annotations.
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