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Summary
MOLE is an open-source library that implements high-order mimetic operators. It provides
discrete analogs of the most common vector calculus operators: divergence, gradient, curl,
and Laplacian. These operators act on functions discretized over staggered grids (uniform,
nonuniform, and curvilinear), and they satisfy local and global conservation laws (Dumett &
Castillo, 2022a, 2023a). MOLE’s operators can be utilized to develop code for solving partial
differential equations (PDEs).

The mathematics are based on the work of Corbino & Castillo (2020). In addition, the user
may find useful previous publications such as J. E. Castillo & Grone (2003), in which similar
operators are derived using a matrix analysis approach.

Mimetic operators
Mimetic operators, divergence (D), gradient (G), curl (C), and Laplacian (L), are discrete
analogs of their corresponding continuum operators. These operators satisfy in the discrete
sense the vector identities that the continuum ones do (Dumett & Castillo, 2023b), making
them more faithful to the physics in specific contexts.

The basis of higher-dimensional operators, as well as more sophisticated operators such as the
Laplacian or the biharmonic operator, are the one-dimensional mimetic G and D operators,
together with high-order mimetic interpolation operators (Dumett & Castillo, 2022b), which
are also contained in the library. These finite-dimensional operators can be reused throughout
the mathematical model and they provide a higher level of abstraction at the time of solving
PDEs.

These operators have been used to write codes to solve PDEs of different types (Abouali &
Castillo, 2013; Bazan et al., 2011; Boada et al., 2020; Brzenski & Castillo, 2023; Puente et
al., 2014; Rojas et al., 2008; Velazco et al., 2020; Villamizar et al., 2021). For an overview of
mimetic methods of different types see the book by Castillo and Miranda and the references
therein (José E. Castillo & Miranda, 2013).

Statement of need
Implementing mimetic operators, particularly in three dimensions, presents significant challenges,
yet MOLE streamlines this process, allowing users to focus their efforts on their specific problems.
For instance, solving equations like the Poisson equation −∇2𝑢 = 𝑓 becomes straightforward
with MOLE, as users can employ its well-tested mimetic operators with just a few lines of code.
This versatility extends to a diverse user base, including physicists, engineers, and numerical
analysts, who benefit from MOLE’s comprehensive library. Moreover, the library’s flexibility
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enables users to seamlessly transition between grids, resolutions, and discretization orders,
enhancing their ability to tailor solutions to their unique needs.

State of the field
A previous library (Sanchez et al., 2014) was developed to implement the mimetic operators
presented in J. E. Castillo & Grone (2003). This library was only capable of handling dense
matrices so it was limited to solve small problems hence its development was stopped. MOLE
implements the operators presented in Corbino & Castillo (2020). These operators are optimal
from the number of points in each stencil and produce more accurate results. MOLE deals
with sparse matrices efficiently and is capable of solving problems with millions of cells. To the
best of the authors’ knowledge, there are no other libraries that implement mimetic methods
as the ones presented in this paper.

The library
MOLE was designed to be an intuitive software package to construct mimetic operators based
on the method of Corbino & Castillo (2020). MOLE is implemented in C++ and in MATLAB
(these are two independent flavors) and every function in MOLE returns a sparse matrix of the
requested mimetic operator. For information on the installation or usage of the library, please
read the documentation included in the repository.

Mimetic operators can be easily used to build codes to solve PDEs with a few lines of code.
For example, if the user wants to get a one-dimensional k-order mimetic Laplacian, they just
need to invoke:

lap(k, m, dx);

where k is the desired order of accuracy, m is the number of cell centers (of the spatial grid),
and dx is the distance between consecutive cell centers. All functions in MOLE are quite
consistent with this syntax, and more information regarding the signature of the function can
be accessed via the help command. The C++ version of the library depends on Armadillo,
which is an open-source package for dense and sparse linear algebra (Sanderson & Curtin,
2016), SuperLU for LU factorization (Li, 2005), and OpenBLAS for parallel matrix-vector and
matrix-matrix operations (Zhang et al., 2020).

It is important to mention that MOLE’s main role is the construction of matrices that represent
spatial derivative operators and boundary conditions; other components such as solvers and
time steppers are only provided via self-contained examples.

The following code snippet shows how easy is to solve a 1D Poisson problem (with Robin’s
boundary conditions) through MOLE:

% File: elliptic1D.m

addpath('../mole_MATLAB') % Add path to library

west = 0; % Domain's limits

east = 1;

k = 4; % Operator's order of accuracy

m = 2*k+1; % Minimum number of cells to attain the desired accuracy

dx = (east-west)/m; % Step length

L = lap(k, m, dx); % 1D Mimetic Laplacian operator

% Impose Robin BC on Laplacian operator
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a = 1; % Dirichlet coefficient

b = 1; % Neumann coefficient

L = L + robinBC(k, m, dx, a, b); % Add BCs to Laplacian operator

% 1D Staggered grid

grid = [west west+dx/2 : dx : east-dx/2 east];

% RHS

U = exp(grid)';

U(1) = 0; % West BC

U(end) = 2*exp(1); % East BC

U = L\U; % Solve a system of linear equations

% Plot result

plot(grid, U, 'o-')

title('Poisson''s equation with Robin BC')

xlabel('x')

ylabel('u(x)')

Figure 1: Solution to the problem using k=4 and m=9.

Concluding remarks
In this short article we introduced MOLE, an open-source library that implements the mimetic
operators from Corbino & Castillo (2020). For conciseness purposes, we showed a one-
dimensional Poisson problem as an example. However, MOLE includes over 30 examples that
span a wide range of applications, from the one-way wave equation to highly nonlinear and
computationally demanding problems, including the Navier-Stokes equation for fluid dynamics
and Richard’s equation for unsaturated flow in porous media. The user can find such examples
in the Examples folder.
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