
CoSApp: a Python library to create, simulate and
design complex systems.

Étienne Lac 1¶, Guy De Spiegeleer 2, Adrien Delsalle 2, Frédéric
Collonval 3, Duc-Trung Lê 4, and Mathias Malandain 5

1 Safran Tech, Digital Sciences & Technologies Department, France 2 twiinIT, France 3 WebScIT,
France 4 QuantStack, France 5 Inria centre at Rennes University, France ¶ Corresponding author

DOI: 10.21105/joss.06292

Software
• Review
• Repository
• Archive

Editor: Rohit Goswami
Reviewers:

• @jbussemaker
• @chenxinye

Submitted: 23 January 2024
Published: 29 February 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
CoSApp, for Collaborative System Approach, is an object-oriented Python framework that
allows domain experts and system architects to create, assemble, simulate and design complex
systems. The API of CoSApp is focused on simplicity and explicit declaration of design
problems. Special attention is given to modularity; a very flexible mechanism of solver assembly
allows users to construct complex, customized simulation workflows. CoSApp handles steady-
state simulation, as well as time-dependent dynamic systems, and multimode systems with
event-based mode transitions.

Statement of need
The design of industrial products is usually a complex process, involving experts from multiple
disciplines, and the interaction of many different components. Multidisciplinary Design Analysis
and Optimization (MDAO) plays a crucial role in this process, by accounting for strong
coupling between various components at early design stages, where the only way to assess
the final product is to rely on physical simulation models. In this context, flexibility, rather
than sheer performance, is key to assessing the value of new concepts and guiding design
choices. Moreover, a clear separation between simulation models and resolution tools (solvers,
optimizers, etc.) must be enforced to enable agile design processes.

CoSApp addresses these needs by providing a user-friendly and comprehensive framework for
creating both stand-alone and composite computational models, and solving mathematical
problems based on specific design criteria. In particular, constraints can be added interactively
in CoSApp workflows, which offers several advantages:

1. Problem complexity can be increased gradually, to help global convergence by starting
from a physically sound state of the system.

2. Engineering practices (referred to as design methods in CoSApp) can be coded within
domain-specific models as a collection of algebraic problems that can be selectively
activated in the context of a broader system.

Thanks to its inherent agility, CoSApp caters to domain experts involved in model development,
as well as system architects focused on designing high-level assemblies that model systems of
interest.

Lac et al. (2024). CoSApp: a Python library to create, simulate and design complex systems. Journal of Open Source Software, 9(94), 6292.
https://doi.org/10.21105/joss.06292.

1

https://orcid.org/0000-0002-6964-0044
https://orcid.org/0009-0005-9828-0550
https://orcid.org/0009-0001-8126-4045
https://orcid.org/0009-0000-3579-3424
https://orcid.org/0009-0000-0415-8399
https://orcid.org/0000-0001-9740-4914
https://doi.org/10.21105/joss.06292
https://github.com/openjournals/joss-reviews/issues/6292
https://gitlab.com/cosapp/cosapp
https://doi.org/10.5281/zenodo.10722403
https://rgoswami.me
https://orcid.org/0000-0002-2393-8056
https://github.com/jbussemaker
https://github.com/chenxinye
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06292

State of the field
There exist many MDAO frameworks. Among open-source, general-purpose libraries, three
stand out in particular: OpenMDAO (Gray et al., 2019), GEMSEO (Gallard et al., 2018) and
OpenModelica (Fritzson et al., 2020).

OpenMDAO and GEMSEO are Python frameworks focused on optimization. They adopt
a causal approach, meaning that each model (referred to as component in OpenMDAO,
and a discipline in GEMSEO) has a predefined input/output interface associated with a
transfer function representing causality. Both packages offer a large choice of numerical
methods to solve and optimize multidisciplinary systems. Noticeably, they can take advantage
of system-level gradients, when available (either coded inside the models or computed by
automatic differentiation), which allows them to handle large numbers of unknowns (tens of
thousands). At present, CoSApp evaluates gradients using finite differences, which limits the
size of problems it can tackle (a few hundreds of unknowns, typically, which proves to be
sufficient in early design phases). Among other features, OpenMDAO, developed by NASA,
is a powerful tool to optimize trajectories, whereas GEMSEO, at present, does not support
dynamic systems. Although both packages offer a wealth of valuable features, neither, to our
knowledge, supports multimode systems with event-based transitions. A benchmark between
OpenMDAO, GEMSEO and CoSApp was published by Di Giuseppe et al. (2023).

OpenModelica is based on the Modelica language, which supports acausal models. Depending
on boundary conditions, the computation of a given model requires a prior automatic causality
analysis, generating C code compiled into an executable artifact. Defining non-causal models
is a great advantage for developers, who do not have to worry about information fluxes, and
need only provide implicit relations between model variables. Moreover, the causality analysis
reduces the number of unknowns to its minimum, and the use of a compiled language yields
faster execution of the direct model, compared to interpreted languages such as Python. A
significant drawback of this approach, though, is the lack of control in the choice of design
parameters or iterative variables required to break algebraic loops, which may lead to poorly
converging, hard-to-debug systems.

Overview

Systems and Ports
General assembly and execution semantics are coded within base classes, specialized for each
model in derived classes. The basic bricks of CoSApp models are referred to as systems,
represented by base class System. Systems are computational units with a defined input/output
interface. Inputs and outputs are represented by collections of variables called ports. Like
systems, custom ports, containing domain-specific variables, can be defined by specializing
base class Port.

Systems may have an arbitrary number of input and output ports. Higher-level assemblies are
created by connecting ports of different systems in the context of a parent system. Hence, a
CoSApp system is organized as a hierarchical tree of sub-models, referred to as child systems.
By design, child systems are always computed prior to parent systems, such that direct
sub-systems are always up-to-date when the parent system is executed.

CoSApp systems can also be viewed as oriented graphs transforming input variables into output
variables; upstream end nodes of such graphs are referred to as free inputs. One key feature of
CoSApp is the ability to declare any free input as unknown, in order to solve inverse problems.
Cyclic dependencies, if any, are automatically detected, and treated as inner constraints during
system execution.

Lac et al. (2024). CoSApp: a Python library to create, simulate and design complex systems. Journal of Open Source Software, 9(94), 6292.
https://doi.org/10.21105/joss.06292.

2

https://doi.org/10.21105/joss.06292

Drivers
Drivers are algorithmic objects that modify the state of a given system, according to a specific
simulation intent. Solvers, optimizers and time integrators are typical examples of drivers.
Drivers are attached, as external objects, to the system they are intended to modify. Original
properties of drivers are:

1. Any number of drivers can be added to a single system. In this case, drivers are executed
in sequence, each retrieving the owner system in the state determined by the previous
driver.

2. Much like systems, drivers can be organized as composite trees, executed in a bottom-up
fashion. Such assemblies can, for instance, allow one to solve an optimization problem
at every time step of a dynamic simulation, or, conversely, to compute a time trajectory
at every iteration of an optimization problem.

3. Drivers can be attached at different levels of a system tree. This property allows users
to individually solve sub-parts of a system tree, in cases where this can help improve a
complex convergence process for example.

Combining these properties allows the construction of complex simulation workflows, tailored
to specific needs. CoSApp comes with a set of predefined drivers, some of which are discussed
below. However, users can also define their own drivers, to implement custom algorithms in
their simulation cases.

Intrinsic and Design Problems
Designing a system consists of calculating input variables that satisfy a set of constraints
on the system. CoSApp distinguishes between constraints resulting from the inner structure
of the system (imposed by physics, or by algebraic loops in the system tree), referred to as
intrinsic constraints, and constraints imposed to meet specific requirements, referred to as
design constraints. For example, current balance at the nodes of an electric circuit yields
intrinsic constraints, that must be satisfied no matter what. In contrast, seeking a resistance
value, say, that ensures a particular current in specific operating conditions, is a design problem,
declared outside the model. An analogy can be drawn with object-oriented programming by
noting that intrinsic constraints are characteristic of a class, while design problems are specific
to individual instances of a class.

CoSApp solves both intrinsic and design problems jointly, as a single, aggregated algebraic
problem. This avoids the use of two nested solvers, and guarantees that intrinsic constraints
(in particular, coupling conditions) are only solved under desired design conditions, rather than
at every iteration of an outer solver.

Main Features

Single- and Multi-point Design
In complex systems, parameters are designed under most critical constraints, that usually occur
in different operating conditions. CoSApp offers a simple way of declaring such multi-point
design problems.

Each design point is defined by specific environment conditions. While intrinsic constraints are
enforced in every design point, specific design constraints can be declared on individual points.
Unknowns can be declared as point-specific, or globally, for all points. In the former case, local
values are determined for the targeted design points; in the latter case, a unique value of the
unknown is sought, and used on all points. Geometrical parameters, typically, are generally
regarded as global design unknowns, since their values are independent of operating conditions.

Lac et al. (2024). CoSApp: a Python library to create, simulate and design complex systems. Journal of Open Source Software, 9(94), 6292.
https://doi.org/10.21105/joss.06292.

3

https://doi.org/10.21105/joss.06292

Optimization
Minimization or maximization of scalar quantities can be performed using a dedicated driver
that encapsulates several algorithms from scipy.optimize. Both inequality and equality
constraints may be specified. At present, multi-objective optimization is not supported.

Dynamic and Multimode Systems
CoSApp encompasses dynamic systems, containing variables that are implicitly known through
their time derivative. Given initial conditions, the continuous trajectory of a dynamic system
can be integrated numerically, using dedicated time drivers. Such simulations are referred to
as continuous-time simulations.

Discontinuities, however, can be introduced with the occurrence of events, defined within
a system. Events are triggerable objects that activate when a certain condition is detected
in their owner system. Upon the occurrence of an event, systems may transition from one
mode to another, possibly undergoing structural recomposition (new sub-system tree, new
constraints, etc.)

A tailor-made algorithm tracks event occurrences (including event cascades and subsequent
system transitions), and updates the system during continous-time phases between events. This
algorithm is said to be hybrid, as it handles both continuous- and discrete-time (event-based)
evolutions of the system.

Surrogate models
Surrogate models can be trained at any level in the system tree (including for the head system),
using a response surface computed from a given Design of Experiment (DoE). When present,
surrogate models supersede the original behaviour of the system. Several classes of surrogate
models are available in CoSApp, but users can also define custom meta-models by providing
their own implementation of a specific API.

Example
Many examples are available in online tutorials. In the following section, we illustrate multi-point
design of a CoSApp model with a short example.

Lac et al. (2024). CoSApp: a Python library to create, simulate and design complex systems. Journal of Open Source Software, 9(94), 6292.
https://doi.org/10.21105/joss.06292.

4

https://cosapp.readthedocs.io/en/latest/tutorials/00-Introduction.html#Tutorials
https://doi.org/10.21105/joss.06292

Multi-point design of a supersonic nozzle

Figure 1: Schematic representation of possible flow conditions in a supersonic nozzle, depending on
atmospheric pressure. Left: normal shock in the diverging part; middle: oblique shock at outlet; right:
isentropic Prandtl-Meyer expansion at outlet. The subsonic flow regime is omitted.

Design phase

In the next code block, we consider a model named NozzleAero (not shown) which computes
the flow regime (mass flowrate, Mach number, thrust, etc.) of a supersonic nozzle (Figure 1),
given inlet flow conditions (stored in input port flow_in) and the atmospheric pressure at
the outlet (stored as variable p_atm). In this example, two key parameters, namely nozzle
throat area and exit section area, are jointly calculated to meet thrust targets at ground level
(𝑝atm = 1 bar) and in vacuum (𝑝atm = 0).

from propulsion.systems import NozzleAero

from cosapp.drivers import NonLinearSolver, RunSingleCase

Instantiate model

nozzle = NozzleAero('nozzle')

Initialize input port `flow_in` and specific heat ratio

nozzle.flow_in.Pt = 115e5

nozzle.flow_in.Tt = 1500

nozzle.gamma = 1.3

Add solver to the model

solver = nozzle.add_driver(NonLinearSolver('solver'))

Define design points `ground` and `vacuum` as children of `solver`

ground = solver.add_child(RunSingleCase('ground'))

vacuum = solver.add_child(RunSingleCase('vacuum'))

Define point-specific conditions

ground.set_values({'p_atm': 1e5})

vacuum.set_values({'p_atm': 0.0})

Define design unknowns, common to all points

Lac et al. (2024). CoSApp: a Python library to create, simulate and design complex systems. Journal of Open Source Software, 9(94), 6292.
https://doi.org/10.21105/joss.06292.

5

https://doi.org/10.21105/joss.06292

solver.add_unknown(['throat.area', 'area_ratio'])

Define point-specific constraints

ground.add_equation('thrust == 960e3')

vacuum.add_equation('thrust == 1340e3')

Set initial guess

nozzle.throat.area = 1.0

nozzle.area_ratio = 25.0

Solve

nozzle.run_drivers()

print(solver.problem)

Result:

Unknowns [2]

throat.area = 0.059317698181515305

area_ratio = 67.61637505773945

Equations [2]

ground[thrust == 960e3] := -1.6763806343078613e-08

vacuum[thrust == 1340e3] := 0.0

where the number following symbol := indicates the residue (left - right) of equation left ==
right.

Off-design study

import numpy

Purge drivers

nozzle.drivers.clear()

for nozzle.p_atm in numpy.logspace(5, 2, 11):

nozzle.run_drivers() # update model

print(

f"p_atm = {nozzle.p_atm * 1e-5:.3f} bar",

f"thrust = {nozzle.thrust * 1e-3:.1f} kN",

f"M_out = {nozzle.M_out:.2f}",

f"{nozzle.status}",

sep=",\t",

)

Result:

p_atm = 1.000 bar, thrust = 960.0 kN, M_out = 2.65, Oblique shock (M=5.39)

p_atm = 0.501 bar, thrust = 1094.6 kN, M_out = 3.66, Oblique shock (M=5.39)

p_atm = 0.251 bar, thrust = 1158.3 kN, M_out = 4.44, Oblique shock (M=5.39)

p_atm = 0.126 bar, thrust = 1192.6 kN, M_out = 5.04, Oblique shock (M=5.39)

p_atm = 0.063 bar, thrust = 1215.8 kN, M_out = 5.57, Isentropic expansion

p_atm = 0.032 bar, thrust = 1234.9 kN, M_out = 6.13, Isentropic expansion

p_atm = 0.016 bar, thrust = 1250.9 kN, M_out = 6.72, Isentropic expansion

p_atm = 0.008 bar, thrust = 1264.4 kN, M_out = 7.36, Isentropic expansion

p_atm = 0.004 bar, thrust = 1275.8 kN, M_out = 8.04, Isentropic expansion

p_atm = 0.002 bar, thrust = 1285.5 kN, M_out = 8.77, Isentropic expansion

p_atm = 0.001 bar, thrust = 1293.7 kN, M_out = 9.56, Isentropic expansion

Lac et al. (2024). CoSApp: a Python library to create, simulate and design complex systems. Journal of Open Source Software, 9(94), 6292.
https://doi.org/10.21105/joss.06292.

6

https://doi.org/10.21105/joss.06292

References
Di Giuseppe, R., Delbecq, S., Budinger, V., & Pauvert, V. (2023). An exploratory study

of open-source frameworks for MDAO. AeroBest 2023, ECCOMAS, Lisbon, 19–21 July.
ISBN: 978-989-53599-4-3

Fritzson, P., Pop, A., Abdelhak, K., Ashgar, A., Bachmann, B., Braun, W., Bouskela, D.,
Braun, R., Buffoni, L., Casella, F., Castro, R., Franke, R., Fritzson, D., Gebremedhin,
M., Heuermann, A., Lie, B., Mengist, A., Mikelsons, L., Moudgalya, K., … Östlund,
P. (2020). The OpenModelica integrated environment for modeling, simulation, and
model-based development. Modeling, Identification and Control, 41(4), 241–295. https:
//doi.org/10.4173/mic.2020.4.1

Gallard, F., Vanaret, C., Guénot, D., Gachelin, V., Lafage, R., Pauwels, B., Barjhoux, P.-J.,
& Gazaix, A. (2018). GEMS: A Python library for automation of multidisciplinary design
optimization process generation. 2018 AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference. https://doi.org/10.2514/6.2018-0657

Gray, J. S., Hwang, J. T., Martins, J. R. R. A., Moore, K. T., & Naylor, B. A. (2019).
OpenMDAO: An open-source framework for multidisciplinary design, analysis, and op-
timization. Structural and Multidisciplinary Optimization, 59(4), 1075–1104. https:
//doi.org/10.1007/s00158-019-02211-z

Lac et al. (2024). CoSApp: a Python library to create, simulate and design complex systems. Journal of Open Source Software, 9(94), 6292.
https://doi.org/10.21105/joss.06292.

7

https://doi.org/10.4173/mic.2020.4.1
https://doi.org/10.4173/mic.2020.4.1
https://doi.org/10.2514/6.2018-0657
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.21105/joss.06292

	Summary
	Statement of need
	State of the field
	Overview
	Systems and Ports
	Drivers
	Intrinsic and Design Problems

	Main Features
	Single- and Multi-point Design
	Optimization
	Dynamic and Multimode Systems
	Surrogate models

	Example
	Multi-point design of a supersonic nozzle
	Design phase
	Off-design study

	References

