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Summary
Adaptive Brownian bridge-based aggregation (ABBA) (Elsworth & Güttel, 2020a) is a symbolic
time series representation approach that is applicable to general time series. It is based on a
tolerance-controlled polygonal chain approximation of the time series, followed by a mean-based
clustering of the polygonal pieces into groups. With the increasing need for faster time series
processing, lots of efforts have been put into deriving new time series representations in order
to reduce the time complexity of similarity search or enhance forecasting performance of
machine learning models. Compared to working on the raw time series data, symbolizing time
series with ABBA provides numerous benefits including but not limited to (1) dimensionality
reduction, (2) smoothing and noise reduction, and (3) explainable feature discretization. The
time series features extracted by ABBA enable fast time series forecasting (Elsworth & Güttel,
2020b), anomaly detection (Chen & Güttel, 2023; Elsworth & Güttel, 2020a), event prediction
(Gogineni et al., 2022), classification (Nguyen & Ifrim, 2023; Taktak et al., 2024), and other
data-driven tasks in time series analysis (Harris et al., 2021; Wang et al., 2023). An example
illustration of an ABBA symbolization is shown in Figure 1.

Figure 1: ABBA symbolization with 4 symbols.

ABBA follows a two-phase approach to symbolize time series, namely compression and digitiza-
tion. The first phase aims to reduce the time series dimension by polygonal chain approximation,
and the second phase assigns symbols to the polygonal pieces. Both phases operate together
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to ensure that the essential time series features are best reflected by the symbols, controlled
by a user-chosen error tolerance. The advantages of the ABBA representation against other
symbolic representations include (1) better preservation of essential shape features, e.g., when
compared against the popular SAX representation (Elsworth & Güttel, 2020a; Lin et al., 2003);
(2) effective representation of local up and down trends in the time series which supports motif
detection; (3) demonstrably reduced sensitivity to hyperparameters of neural network models
and the initialization of random weights in forecasting applications (Elsworth & Güttel, 2020b).

fABBA is a Python library to compute ABBA symbolic time series representations on Linux,
Windows, and MacOS systems. With Cython compilation and typed memoryviews, it signifi-
cantly outperforms existing ABBA implementations. The fABBA library also includes a new
ABBA variant, fABBA (Chen & Güttel, 2023), which uses a fast alternative digitization method
(i.e., greedy aggregation) instead of k-means clustering (Lloyd, 1982), providing significant
speedup and improved tolerance-based digitization (without the need to specify the number 𝑘
of symbols a priori). The experiments in Chen & Güttel (2023) demonstrate that fABBA runs
significantly faster than the original ABBA module at https://github.com/nla-group/ABBA/.
fABBA is an open-source library and licensed under the 3-Clause BSD License. Its redistri-
bution and use, with or without modification, are permitted under conditions described in
https://opensource.org/license/bsd-3-clause/.

Examples
fABBA can installed via the Python Package Index or conda forge. Detailed documenta-
tion for its installation, usage, API reference, and quick start examples can be found on
https://fabba.readthedocs.io/en/latest/. Below we provide a brief demonstration.

Compress and reconstruct a time series
The following example approximately transforms a time series into a symbolic string represen-
tation (using method transform()) and then converts the string back into a numerical format
(using method inverse_transform()). fABBA requires two parameters, tol and alpha. The
tolerance tol determines how closely the polygonal chain approximation follows the original
time series. The parameter alpha controls how similar time series pieces need to be in order
to be represented by the same symbol. A smaller tol means that more polygonal pieces are
used and the polygonal chain approximation is more accurate; but on the other hand, it will
increase the length of the string representation. Similarly, a smaller alpha typically results in
more accurate symbolic digitization but a larger number of symbols.

import numpy as np

import matplotlib.pyplot as plt

from fABBA import fABBA

# original time series

ts = [np.sin(0.05*i) for i in range(1000)]

fabba = fABBA(tol=0.1, alpha=0.1, sorting='2-norm', scl=1, verbose=0)

# symbolic representation of the time series

string = fabba.fit_transform(ts)

# prints aBbCbCbCbCbCbCbCA

print(string)

# reconstruct numerical time series

inverse_ts = fabba.inverse_transform(string, ts[0])
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More ABBA variants
Other clustering-based ABBA variants are also provided, supported by the clustering methods
in the scikit-learn library (Pedregosa et al., 2011). Below is a basic code example.

import numpy as np

from sklearn.cluster import KMeans

from fABBA import ABBAbase

# original time series

ts = [np.sin(0.05*i) for i in range(1000)]

# k-means clustering with 5 symbols

kmeans = KMeans(n_clusters=5, random_state=0, init='k-means++', verbose=0)

abba = ABBAbase(tol=0.1, scl=1, clustering=kmeans)

# symbolic representation of the time series

string = abba.fit_transform(ts)

# prints BbAaAaAaAaAaAaAaC

print(string)

# reconstruct numerical time series

inverse_ts = abba.inverse_transform(string)

Statement of Need
Symbolic representations enhance time series processing by a large number of powerful
techniques developed, e.g., by the natural language processing or bioinformatics communities
(Lin et al., 2003, 2007). fABBA is a Python module for computing such symbolic time series
representations very efficiently, enabling their use for downstream tasks such as time series
classification, forecasting, and anomaly detection.
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