
plotastic: Bridging Plotting and Statistics in Python
Martin Kuric 1¶ and Regina Ebert 1

1 Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Germany ¶
Corresponding author

DOI: 10.21105/joss.06304

Software
• Review
• Repository
• Archive

Editor: Rachel Kurchin
Reviewers:

• @gmrandazzo
• @SunnyXu

Submitted: 23 November 2023
Published: 09 March 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

In partnership with

This article and software are linked
with research article DOI
10.3847/xxxxx <- update this
with the DOI from AAS once you
know it., published in the .

Summary
plotastic addresses the challenges of transitioning from exploratory data analysis to hypothesis
testing in Python’s data science ecosystem. Bridging the gap between seaborn and pingouin,
this library offers a unified environment for plotting and statistical analysis. It simplifies the
workflow with user-friendly syntax and seamless integration with familiar seaborn parameters
(y, x, hue, row, col). Inspired by seaborn’s consistency, plotastic utilizes a DataAnalysis

object to intelligently pass parameters to pingouin statistical functions. Hence, statistics and
plotting are performed on the same set of parameters, so that the strength of seaborn in
visualizing multidimensional data is extended onto statistical analysis. In essence, plotastic
translates seaborn parameters into statistical terms, configures statistical protocols based on
intuitive plotting syntax and returns a matplotlib figure with known customization options
and more. This approach streamlines data analysis, allowing researchers to focus on correct
statistical testing and less about specific syntax and implementations.

Statement of need
Python’s data science ecosystem provides powerful tools for both visualization and statistical
testing. However, the transition from exploratory data analysis to hypothesis testing can
be cumbersome, requiring users to switch between libraries and adapt to different syntaxes.
seaborn has become a popular choice for plotting in Python, offering an intuitive interface.
Its statistical functionality focuses on descriptive plots and bootstrapped confidence intervals
(Waskom, 2021). The library pingouin offers an extensive set of statistical tests, but it lacks
integration with common plotting capabilities (Vallat, 2018). statannotations integrates
statistical testing with plot annotations, but uses a complex interface and is limited to pairwise
comparisons (Charlier et al., 2022).

plotastic addresses this gap by offering a unified environment for plotting and statistical
analysis. With an emphasis on user-friendly syntax and integration of familiar seaborn

parameters, it simplifies the process for users already comfortable with seaborn. The library
ensures a smooth workflow, from data import to hypothesis testing and visualization.

Example
The following code demonstrates how plotastic analyzes the example dataset “fmri”, similar
to Waskom (2021) (Figure 1).

IMPORT PLOTASTIC

import plotastic as plst

IMPORT EXAMPLE DATA

DF, _dims = plst.load_dataset("fmri", verbose = False)

Kuric, & Ebert. (2024). plotastic: Bridging Plotting and Statistics in Python. Journal of Open Source Software, 9(95), 6304. https:
//doi.org/10.21105/joss.06304.

1

https://orcid.org/0009-0009-7292-7714
https://orcid.org/0000-0002-8192-869X
https://doi.org/10.21105/joss.06304
https://github.com/openjournals/joss-reviews/issues/6304
https://github.com/markur4/plotastic
https://doi.org/10.5281/zenodo.10775033
https://rkurchin.github.io
https://orcid.org/0000-0002-2147-4809
https://github.com/gmrandazzo
https://github.com/SunnyXu
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3847/xxxxx \TU\textless - update this with the DOI from AAS once you know it.
https://doi.org/10.3847/xxxxx \TU\textless - update this with the DOI from AAS once you know it.
https://doi.org/10.3847/xxxxx \TU\textless - update this with the DOI from AAS once you know it.
https://doi.org/10.21105/joss.06304
https://doi.org/10.21105/joss.06304

EXPLICITLY DEFINE DIMENSIONS TO FACET BY

dims = dict(

y = "signal", # y-axis, dependent variable

x = "timepoint", # x-axis, independent variable (within-subject factor)

hue = "event", # color, independent variable (within-subject factor)

col = "region" # axes, grouping variable

)

INITIALIZE DATAANALYSIS OBJECT

DA = plst.DataAnalysis(

data=DF, # Dataframe, long format

dims=dims, # Dictionary with y, x, hue, col, row

subject="subject", # Datapoints are paired by subject (optional)

verbose=False, # Print out info about the Data (optional)

)

STATISTICAL TESTS

DA.check_normality() # Check Normality

DA.check_sphericity() # Check Sphericity

DA.omnibus_rm_anova() # Perform RM-ANOVA

DA.test_pairwise() # Perform Posthoc Analysis

PLOTTING

(DA

.plot_box_strip() # Pre-built plotting function initializes plot

.annotate_pairwise(# Annotate results from DA.test_pairwise()

include="__HUE" # Use only significant pairs across each hue

)

)

Figure 1: Example figure of plotastic (version 0.1). Image style was set by plt.style.use("ggplot")

Kuric, & Ebert. (2024). plotastic: Bridging Plotting and Statistics in Python. Journal of Open Source Software, 9(95), 6304. https:
//doi.org/10.21105/joss.06304.

2

https://doi.org/10.21105/joss.06304
https://doi.org/10.21105/joss.06304

Table 1: Results from DA.check_sphericity(). plotastic assesses sphericity after grouping the data
by all grouping dimensions (hue, row, col). For example, DA.check_sphericity() grouped the ‘fmri’
dataset by “region” (col) and “event” (hue), performing four subsequent sphericity tests for four datasets.

‘region’, ‘event’ spher W chi2 dof pval
group
count n per group

‘frontal’, ‘cue’ True 3.26e+20 -462.7 44 1 10 [14]
‘frontal’, ‘stim’ True 2.45e+17 -392.2 44 1 10 [14]
‘parietal’, ‘cue’ True 1.20e+20 -452.9 44 1 10 [14]
‘parietal’, ‘stim’ True 2.44e+13 -301.9 44 1 10 [14]

Table 2: Results of DA.omnibus_rm_anova(). plotastic performs one two-factor RM-ANOVA per axis
(grouping the data by row and col dimensions) using x and hue as the within-factors. For this example,
DA.omnibus_rm_anova() grouped the ‘fmri’ dataset by “region” (col), performing two subsequent
two-factor RM-ANOVAs. Within-factors are “timepoint” (x) and “event” (hue). For conciceness,
GG-Correction and effect sizes are not shown.

‘region’ Source SS ddof1 ddof2 MS F p-unc stars
‘parietal’ timepoint 1.583 9 117 0.175 26.20 3.40e-24 ****
‘parietal’ event 0.770 1 13 0.770 85.31 4.48e-07 ****
‘parietal’ timepoint *

event
0.623 9 117 0.069 29.54 3.26e-26 ****

‘frontal’ timepoint 0.686 9 117 0.076 15.98 8.28e-17 ****
‘frontal’ event 0.240 1 13 0.240 23.44 3.21e-4 ***
‘frontal’ timepoint *

event
0.242 9 117 0.026 13.031 3.23e-14 ****

Overview
The functionality of plotastic revolves around a seamless integration of statistical analysis and
plotting, leveraging the capabilities of pingouin, seaborn, matplotlib and statannotations

(Charlier et al., 2022; Hunter, 2007; Vallat, 2018; Waskom, 2021). It utilizes long-format
pandas DataFrames as its primary input, aligning with the conventions of seaborn and ensuring
compatibility with existing data structures (McKinney, 2010; Team, 2020; Wickham, 2014).

plotastic was inspired by seaborn using the same set of intuitive and consistent parameters
(y, x, hue, row, col) found in each of its plotting functions (Waskom, 2021). These parameters
intuitively delineate the data dimensions plotted, yielding ‘facetted’ subplots, each presenting
y against x. This allows for rapid and insightful exploration of multidimensional relationships.
plotastic extends this principle to statistical analysis by storing these seaborn parameters
(referred to as dimensions) in a DataAnalysis object and intelligently passing them to statistical
functions of the pingouin library. This approach is based on the impression that most decisions
during statistical analysis can be derived from how the user decides to arrange the data in
a plot. This approach also prevents code repetition and streamlines statistical analysis. For
example, the subject keyword is specified only once during DataAnalysis initialisation, and
plotastic selects the appropriate paired or unpaired version of the test. Using pingouin

alone requires the user to manually pick the correct test and to repeatedly specify the subject
keyword in each testing function.

In essence, plotastic translates plotting parameters into their statistical counterparts. This
translation minimizes user input and also ensures a coherent and logical connection between
plotting and statistical analysis. The goal is to allow the user to focus on choosing the

Kuric, & Ebert. (2024). plotastic: Bridging Plotting and Statistics in Python. Journal of Open Source Software, 9(95), 6304. https:
//doi.org/10.21105/joss.06304.

3

https://doi.org/10.21105/joss.06304
https://doi.org/10.21105/joss.06304

correct statistical test (e.g. parametric vs. non-parametric) and worry less about specific
implementations.

At its core, plotastic employs iterators to systematically group data based on various
dimensions, aligning the analysis with the distinct requirements of tests and plots. Normality
testing is performed on each individual sample, which is achieved by splitting the data by all
grouping dimensions and also the x-axis (hue, row, col, x). Sphericity and homoscedasticity
testing is performed on a complete sampleset listed on the x-axis, which is achieved by splitting
the data by all grouping dimensions (hue, row, col) (Table 1). For omnibus and posthoc
analyses, data is grouped by the row and col dimensions in parallel to the matplotlib axes,
before performing one two-factor analysis per axis using x and hue as the within/between-factors.
(Table 2).

DataAnalysis visualizes data through predefined plotting functions designed for drawing
multi-layered plots. A notable emphasis within plotastic is placed on showcasing individual
datapoints alongside aggregated means or medians. In detail, each plotting function initializes
a matplotlib figure and axes using plt.subplots() while returning a DataAnalysis object
for method chaining. Axes are populated by seaborn plotting functions (e.g., sns.boxplot()),
leveraging automated aggregation and error bar displays. Keyword arguments are passed
to these seaborn functions, ensuring the same degree of customization. Users can further
customize plots by chaining DataAnalysis methods or by applying common matplotlib code
to override plotastic settings. Figures are exported using plt.savefig().

plotastic also focuses on annotating statistical information within plots, seamlessly incorpo-
rating p-values from pairwise comparisons using statannotations (Charlier et al., 2022). This
integration simplifies the interface and enables options for pair selection in multidimensional
plots, enhancing both user experience and interpretability.

For statistics, plotastic integrates with the pingouin library to support classical assumption
and hypothesis testing, covering parametric/non-parametric and paired/non-paired variants.
Assumptions such as normality, homoscedasticity, and sphericity are tested. Omnibus tests
include two-factor RM-ANOVA, ANOVA, Friedman, and Kruskal-Wallis. Posthoc tests are
implemented through pingouin.pairwise_tests(), offering (paired) t-tests, Wilcoxon, and
Mann-Whitney-U.

To sum up, plotastic stands as a unified and user-friendly solution catering to the needs of
researchers and data scientists, seamlessly integrating statistical analysis with the power of
plotting in Python. It streamlines the workflow, translates seaborn parameters into statistical
terms, and supports extensive customization options for both analysis and visualization.

Acknowledgments
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) SPP microBONE
grants EB 447/10-1 (491715122), JA 504/17-1, HO 4462/1-1 (401358321), We thank the
Elite Netzwerk Bayern and the Graduate School of Life Sciences of the University of Würzburg.

References
Charlier, F., Weber, M., Izak, D., Harkin, E., Magnus, M., Lalli, J., Fresnais, L., Chan, M.,

Markov, N., Amsalem, O., Proost, S., Agamemnon Krasoulis, Getzze, & Repplinger, S.
(2022). Trevismd/statannotations: V0.5. Zenodo. https://doi.org/10.5281/ZENODO.
7213391

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science &
Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55

Kuric, & Ebert. (2024). plotastic: Bridging Plotting and Statistics in Python. Journal of Open Source Software, 9(95), 6304. https:
//doi.org/10.21105/joss.06304.

4

https://doi.org/10.5281/ZENODO.7213391
https://doi.org/10.5281/ZENODO.7213391
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.06304
https://doi.org/10.21105/joss.06304

McKinney, W. (2010). Data Structures for Statistical Computing in Python. 56–61. https:
//doi.org/10.25080/Majora-92bf1922-00a

Team, T. P. D. (2020). Pandas-dev/pandas: Pandas. Zenodo. https://doi.org/10.5281/
zenodo.3509134

Vallat, R. (2018). Pingouin: Statistics in Python. Journal of Open Source Software, 3(31),
1026. https://doi.org/10.21105/joss.01026

Waskom, M. L. (2021). Seaborn: Statistical data visualization. Journal of Open Source
Software, 6(60), 3021. https://doi.org/10.21105/joss.03021

Wickham, H. (2014). Tidy Data. Journal of Statistical Software, 59, 1–23. https://doi.org/
10.18637/jss.v059.i10

Kuric, & Ebert. (2024). plotastic: Bridging Plotting and Statistics in Python. Journal of Open Source Software, 9(95), 6304. https:
//doi.org/10.21105/joss.06304.

5

https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.21105/joss.01026
https://doi.org/10.21105/joss.03021
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.21105/joss.06304
https://doi.org/10.21105/joss.06304

	Summary
	Statement of need
	Example
	Overview
	Acknowledgments
	References

