
LINFA: a Python library for variational inference with
normalizing flow and annealing
Yu Wang1, Emma R. Cobian1, Jubilee Lee1, Fang Liu1, Jonathan D.
Hauenstein1, and Daniele E. Schiavazzi1¶

1 Department of Applied and Computational Mathematics and Statistics, University of Notre Dame,
Notre Dame, IN 46556, USA. ¶ Corresponding author

DOI: 10.21105/joss.06309

Software
• Review
• Repository
• Archive

Editor: Oskar Laverny
Reviewers:

• @robmoss
• @selimfirat

Submitted: 28 November 2023
Published: 05 April 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Variational inference is an increasingly popular method in statistics and machine learning
for approximating probability distributions. We developed LINFA (Library for Inference with
Normalizing Flow and Annealing), a Python library for variational inference to accommodate
computationally expensive models and difficult-to-sample distributions with dependent parame-
ters. We discuss the theoretical background, capabilities, and performance of LINFA in various
benchmarks. LINFA is publicly available on GitHub at https://github.com/desResLab/LINFA.

Statement of need
Generating samples from a posterior distribution is a fundamental task in Bayesian inference.
The development of sampling-based algorithms from the Markov chain Monte Carlo family
(Gelfand & Smith, 1990; Geman & Geman, 1984; Hastings, 1970; Metropolis et al., 1953)
has made solving Bayesian inverse problems accessible to a wide audience of both researchers
and practitioners. However, the number of samples required by these approaches is typically
significant and the convergence of Markov chains to their stationary distribution can be slow
especially in high-dimensions. Additionally, satisfactory convergence may not be always easy
to quantify, even if a number of metrics have been proposed in the literature over the years.
More recent paradigms have been proposed in the context of variational inference (Wainwright
et al., 2008), where an optimization problem is formulated to determine the optimal member
of a parametric family of distributions that can approximate a target posterior density. In
addition, flexible approaches to parametrize variational distributions through a composition of
transformations (closely related to the concept of trasport maps, see, e.g., Villani & others
(2009)) have reached popularity under the name of normalizing flows (Dinh et al., 2016;
Kingma et al., 2016; Kobyzev et al., 2020; Papamakarios et al., 2021; Rezende & Mohamed,
2015). The combination of variational inference and normalizing flow has received significant
recent interest in the context of general algorithms for solving inverse problems (El Moselhy &
Marzouk, 2012; Rezende & Mohamed, 2015).

However, cases where the computational cost of evaluating the underlying probability distrib-
ution is significant occur quite often in engineering and applied sciences, for example when
such evaluation requires the solution of an ordinary or partial differential equation. In such
cases, inference can easily become intractable. Additionally, strong and nonlinear dependence
between model parameters may results in difficult-to-sample posterior distributions charac-
terized by features at multiple scales or by multiple modes. The LINFA library is specifically
designed for cases where the model evaluation is computationally expensive. In such cases, the
construction of an adaptively trained surrogate model is key to reducing the computational
cost of inference (Wang et al., 2022). In addition, LINFA provides an adaptive annealing

Wang et al. (2024). LINFA: a Python library for variational inference with normalizing flow and annealing. Journal of Open Source Software, 9(96),
6309. https://doi.org/10.21105/joss.06309.

1

https://doi.org/10.21105/joss.06309
https://github.com/openjournals/joss-reviews/issues/6309
https://github.com/desResLab/LINFA
https://doi.org/10.5281/zenodo.10883597
https://www.actuarial.science
https://orcid.org/0000-0002-7508-999X
https://github.com/robmoss
https://github.com/selimfirat
https://creativecommons.org/licenses/by/4.0/
https://github.com/desResLab/LINFA
https://doi.org/10.21105/joss.06309

scheduler, where temperature increments are automatically determined based on the available
variational approximant of the posterior distribution. Thus, adaptive annealing makes it easier
to sample from complicated densities (Cobian et al., 2023).

Capabilities
LINFA is designed as a general inference engine and allows the user to define custom input
transformations, computational models, surrogates, and likelihood functions.

1. User-defined input parameter transformations - Input transformations may reduce the
complexity of inference and surrogate model construction in situations where the ranges
of the input variables differ substantially or when the input parameters are bounded.
A number of pre-defined univariate transformations are provided, i.e, identity, tanh,
linear, and exp. These transformations are independently defined for each input
variable, using four parameters (𝑎, 𝑏, 𝑐, 𝑑), providing a nonlinear transformation between
the normalized interval [𝑎, 𝑏] and the physical interval [𝑐, 𝑑]. Additional transformations
can be defined by implementing the following member functions.

• forward - It evaluates the transformation from the normalized to the physical space.
One transformation needs to be defined for each input dimension. For example,
the list of lists

trsf_info = [['tanh',-7.0,7.0,100.0,1500.0],

['tanh',-7.0,7.0,100.0,1500.0],

['exp',-7.0,7.0,1.0e-5,1.0e-2]]

defines a hyperbolic tangent transformation for the first two variables and an
exponential transformation for the third.

• compute_log_jacob_func - This is the log Jacobian of the transformation that
needs to be included in the computation of the log posterior density to account for
the additional change in volume.

2. User-defined computational models - LINFA can accommodate any type of models
from analytically defined posteriors with the gradient computed through automatic
differentiation to legacy computational solvers for which the solution gradient is not
available nor easy to compute. New models are created by implementing the methods
below.

• genDataFile - This is a pre-processing function used to generate synthetic obser-
vations. It computes the model output corresponding to the default parameter
values (usually defined as part of the model) and adds noise with a user-specified
distribution. Observations will be stored in a file and are typically assigned to
model.data so they are available for computing the log posterior.

• solve_t - This function solves the model for multiple values of the physical input
parameters specified in a matrix format (with one sample for each row and one
column for each input parameter dimension).

3. User-defined surrogate models - For computational models that are too expensive for
online inference, LINFA provides functionalities to create, train, and fine-tune a surrogate
model. The Surrogate class implements the following functionalities:

• A new surrogate model can be created using the Surrogate constructor.

• limits (i.e. upper and lower bounds) are stored as a list of lists using the format

[[low_0, high_0], [low_1, high_1], ...].

• A pre-grid is defined as an a priori selected point cloud created inside the hyper-
rectangle defined by limits. The pre-grid can be either of type 'tensor' (tensor

Wang et al. (2024). LINFA: a Python library for variational inference with normalizing flow and annealing. Journal of Open Source Software, 9(96),
6309. https://doi.org/10.21105/joss.06309.

2

https://doi.org/10.21105/joss.06309

product grid) where the grid order (number of points in each dimension) is defined
through the argument gridnum, or of type 'sobol' (using low-discrepancy quasi-
random Sobol’ sequences, see Sobol’ (1967)), in which case the variable gridnum

defines the total number of samples.

• Surrogate model Input/Output. The two functions surrogate_save() and
surrogate_load() are provided to save a snapshot of a given surrogate or to read
it from a file.

• The pre_train() function is provided to perform an initial training of the surrogate
model on the pre-grid. In addition, the update() function is also available to
re-train the model once additional training examples are available.

• The forward() function evaluates the surrogate model at multiple input realizations.
If a transformation is defined, the surrogate should always be specified in the
normalized domain with limits defined in terms of the normalized intervals (i.e.,
[𝑎, 𝑏]).

4. User-defined likelihood - A user-defined likelihood function can be defined by passing
the parameters, the model, the surrogate and a coordinate transformation using

log_density(x, model, surrogate, transformation),

and then assigning it as a member function of the experiment class using:

exp.model_logdensity = lambda x: log_density(x, model, surr, transf).

5. Linear and adaptive annealing schedulers - LINFA provides two annealing schedulers by
default. The first is the 'Linear' scheduler with constant increments. The second is
the 'AdaAnn' adaptive scheduler (Cobian et al., 2023) with hyperparameters reported
in Table 7. For the AdaAnn scheduler, the user can also specify a different number of
parameter updates to be performed at the initial temperature 𝑡0, final temperature 𝑡1,
and for any temperature 𝑡0 < 𝑡 < 1. Finally, the batch size (number of samples used to
evaluate the expectations in the loss function) can also be differentiated for 𝑡 = 1 and
𝑡 < 1.

6. User-defined hyperparameters - A complete list of hyperparameters with a description
of their functionality can be found in the Appendix.

Related software modules and packages for variational inference

Other Python modules and packages were found to provide an implementation of variational
inference with a number of additional features. An incomplete list of these packages is reported
below.

• PyMC (Abril-Pla et al., 2023).
• BayesPy (Luttinen, 2016) (with an accompanying paper, BayesPy: Variational Bayesian

Inference in Python).
• Pyro (Bingham et al., 2019) (with some examples).
• PyVBMC (Huggins et al., 2023) with accompanying JOSS article.
• Online notebooks (see this example) which implement variational inference from scratch

in pytorch.

LINFA is based on normalizing flow transformations and therefore can infer non linear parameter
dependence. It also provides the ability to adaptively train a surrogate model (NoFAS) which
significantly reduces the computational cost of inference for the parameters of expensive
computational models. Finally, LINFA provides an adaptive annealing algorithm (AdaAnn)
which autonomously selects the appropriate annealing steps based on the current approximation
of the posterior distribution.

Wang et al. (2024). LINFA: a Python library for variational inference with normalizing flow and annealing. Journal of Open Source Software, 9(96),
6309. https://doi.org/10.21105/joss.06309.

3

https://www.pymc.io/projects/examples/en/latest/variational_inference/variational_api_quickstart.html
https://bayespy.org/
https://arxiv.org/abs/1410.0870
https://arxiv.org/abs/1410.0870
https://docs.pyro.ai/en/stable/inference.html
http://pyro.ai/examples/svi_part_i.html
https://acerbilab.github.io/pyvbmc/
https://joss.theoj.org/papers/10.21105/joss.05428
https://predictivesciencelab.github.io/data-analytics-se/lecture28/hands-on-28.html
https://doi.org/10.21105/joss.06309

Numerical benchmarks
We tested LINFA on multiple problems. These include inference on unimodal and multi-modal
posterior distributions specified in closed form, ordinary differential models and dynamical
systems with gradients directly computed through automatic differentiation in PyTorch, iden-
tifiable and non-identifiable physics-based models with fixed and adaptive surrogates, and
high-dimensional statistical models. Some of the above tests are included with the library
and systematically tested using GitHub Actions. A detailed discussion of these test cases is
provided in the Appendix. To run the test type

python -m unittest linfa.linfa_test_suite.NAME_example

where NAME is the name of the test case, either trivial, highdim, rc, rcr, adaann or
rcr_nofas_adaann.

Conclusion and Future Work
In this paper, we have introduced the LINFA library for variational inference, briefly discussed
the relevant background, its capabilities, and report its performance on a number of test cases.
Some interesting directions for future work are mentioned below.

Future versions will support user-defined privacy-preserving synthetic data generation and
variational inference through differentially private gradient descent algorithms. This will allow
the user to perform inference tasks while preserving a pre-defined privacy budget, as discussed
in (Su et al., 2023). LINFA will also be extended to handle multiple models. This will open
new possibilities to solve inverse problems combining variational inference and multi-fidelity
surrogates (see, e.g., Siahkoohi et al. (2021)). In addition, for inverse problems with significant
dependence among the parameters, it is often possible to simplify the inference task by
operating on manifolds of reduced dimensionality (Brennan et al., 2020). New modules for
dimensionality reduction will be developed and integrated with the LINFA library. Finally, the
ELBO loss typically used in variational inference has known limitations, some of which are
related to its close connection with the KL divergence. Future versions of LINFA will provide
the option to use alternative losses.

Acknowledgements
The authors gratefully acknowledge the support by the NSF Big Data Science & Engineering
grant #1918692 and the computational resources provided through the Center for Research
Computing at the University of Notre Dame. DES also acknowledges support from NSF
CAREER grant #1942662.

Appendix

Background theory
Variational inference with normalizing flow

Consider the problem of estimating (in a Bayesian sense) the parameters 𝑧 ∈ 𝒵 of a physics-
based or statistical model

𝑥 = 𝑓(𝑧) + 𝜀,

from the observations 𝑥 ∈ 𝒳 and a known statistical characterization of the error 𝜀. We
tackle this problem with variational inference and normalizing flow. A normalizing flow (NF)
is a nonlinear transformation 𝐹 ∶ ℝ𝑑 × Λ → ℝ𝑑 designed to map an easy-to-sample base

Wang et al. (2024). LINFA: a Python library for variational inference with normalizing flow and annealing. Journal of Open Source Software, 9(96),
6309. https://doi.org/10.21105/joss.06309.

4

https://doi.org/10.21105/joss.06309

distribution 𝑞0(𝑧0) into a close approximation 𝑞𝐾(𝑧𝐾) of a desired target posterior density
𝑝(𝑧|𝑥). This transformation can be determined by composing 𝐾 bijections

𝑧𝐾 = 𝐹(𝑧0) = 𝐹𝐾 ∘ 𝐹𝐾−1 ∘ ⋯ ∘ 𝐹𝑘 ∘ ⋯ ∘ 𝐹1(𝑧0),

and evaluating the transformed density through the change of variable formula (see Villani &
others (2009)).

In the context of variational inference, we seek to determine an optimal set of parameters
𝜆 ∈ Λ so that 𝑞𝐾(𝑧𝐾) ≈ 𝑝(𝑧|𝑥). Given observations 𝑥 ∈ 𝒳, a likelihood function 𝑙𝑧(𝑥)
(informed by the distribution of the error 𝜀) and prior 𝑝(𝑧), a NF-based approximation 𝑞𝐾(𝑧)
of the posterior distribution 𝑝(𝑧|𝑥) can be computed by maximizing the lower bound to the log
marginal likelihood log 𝑝(𝑥) (the so-called evidence lower bound or ELBO), or, equivalently,
by minimizing a free energy bound (see, e.g., Rezende & Mohamed (2015)).

ℱ(𝑥) = 𝔼𝑞𝐾(𝑧𝐾) [log 𝑞𝐾(𝑧𝐾) − log 𝑝(𝑥, 𝑧𝐾)]

= 𝔼𝑞0(𝑧0)[log 𝑞0(𝑧0)] − 𝔼𝑞0(𝑧0)[log 𝑝(𝑥, 𝑧𝐾)] − 𝔼𝑞0(𝑧0) [
𝐾
∑
𝑘=1

log ∣det 𝜕𝑧𝑘
𝜕𝑧𝑘−1

∣] .
(1)

For computational convenience, normalizing flow transformations are selected to be easily
invertible and their Jacobian determinant can be computed with a cost that grows linearly
with the problem dimensionality. Approaches in the literature include RealNVP (Dinh et al.,
2016), GLOW (Kingma & Dhariwal, 2018), and autoregressive transformations such as MAF
(Papamakarios et al., 2017) and IAF (Kingma et al., 2016). Detailed reviews on a wide range
of flow formulations can be found in Kobyzev et al. (2020) and Papamakarios et al. (2021).

MAF and RealNVP

LINFA implements two widely used normalizing flow formulations, MAF (Papamakarios et
al., 2017) and RealNVP (Dinh et al., 2016). MAF belongs to the class of autoregressive
normalizing flows. Given the latent variable 𝑧 = (𝑧1, 𝑧2,… , 𝑧𝑑), it assumes 𝑝(𝑧𝑖|𝑧1,… , 𝑧𝑖−1) =
𝜙[(𝑧𝑖 − 𝜇𝑖)/𝑒𝛼𝑖], where 𝜙 is the standard normal distribution, 𝜇𝑖 = 𝑓𝜇𝑖

(𝑧1,… , 𝑧𝑖−1), 𝛼𝑖 =
𝑓𝛼𝑖

(𝑧1,… , 𝑧𝑖−1), 𝑖 = 1, 2,… , 𝑑, and 𝑓𝜇𝑖
and 𝑓𝛼𝑖

are masked autoencoder neural networks
(MADE, Germain et al. (2015)). In a MADE autoencoder the network connectivities are
multiplied by Boolean masks so the input-output relation maintains a lower triangular structure,
making the computation of the Jacobian determinant particularly simple. MAF transformations
are then composed of multiple MADE layers, possibly interleaved by batch normalization layers
(Ioffe & Szegedy, 2015), typically used to add stability during training and increase network
accuracy (Papamakarios et al., 2017).

RealNVP is another widely used flow where, at each layer the first 𝑑′ variables are left
unaltered while the remaining 𝑑 − 𝑑′ are subject to an affine transformation of the form
̂𝑧𝑑′+1∶𝑑 = 𝑧𝑑′+1∶𝑑 ⊙ 𝑒𝛼+𝜇, where 𝜇 = 𝑓𝜇(𝑧1∶𝑑′) and 𝛼 = 𝑓𝛼(𝑧𝑑′+1∶𝑑) are MADE autoencoders.

In this context, MAF could be seen as a generalization of RealNVP by setting 𝜇𝑖 = 𝛼𝑖 = 0 for
𝑖 ≤ 𝑑′ (Papamakarios et al., 2017).

Normalizing flow with adaptive surrogate (NoFAS)

LINFA is designed to accommodate black-box models 𝑓 ∶ 𝒵 → 𝒳 between the random inputs
𝑧 = (𝑧1, 𝑧2, ⋯ , 𝑧𝑑)𝑇 ∈ 𝒵 and the outputs (𝑥1, 𝑥2, ⋯ , 𝑥𝑚)𝑇 ∈ 𝒳, and assumes 𝑛 observations
𝑥 = {𝑥𝑖}𝑛𝑖=1 ⊂ 𝒳 to be available. Our goal is to infer 𝑧 and to quantify its uncertainty given
𝑥. We embrace a variational Bayesian paradigm and sample from the posterior distribution
𝑝(𝑧|𝑥) ∝ ℓ𝑧(𝑥, 𝑓) 𝑝(𝑧), with prior 𝑝(𝑧) via normalizing flows.

This requires the evaluation of the gradient of the ELBO (1) with respect to the NF parameters
𝜆, replacing 𝑝(𝑥, 𝑧𝐾) with 𝑝(𝑥|𝑧𝐾) 𝑝(𝑧) = ℓ𝑧𝐾(𝑥, 𝑓) 𝑝(𝑧), and approximating the expectations

Wang et al. (2024). LINFA: a Python library for variational inference with normalizing flow and annealing. Journal of Open Source Software, 9(96),
6309. https://doi.org/10.21105/joss.06309.

5

https://doi.org/10.21105/joss.06309

with their MC estimates. However, the likelihood function needs to be evaluated at every MC
realization, which can be costly if the model 𝑓(𝑧) is computationally expensive. In addition,
automatic differentiation through a legacy (e.g. physics-based) solver may be an impractical,
time-consuming, or require the development of an adjoint solver.

Our solution is to replace the model 𝑓 with a computationally inexpensive surrogate ̂𝑓 ∶
𝒵 ×𝒲 → 𝒳 parameterized by the weigths 𝑤 ∈ 𝒲, whose derivatives can be obtained at a
relatively low computational cost, but intrinsic bias in the selected surrogate formulation, a
limited number of training examples, and locally optimal 𝑤 can compromise the accuracy of ̂𝑓.

To resolve these issues, LINFA implements NoFAS, which updates the surrogate model
adaptively by smartly weighting the samples of 𝑧 from NF thanks to a memory-aware loss
function. Once a newly updated surrogate is obtained, the likelihood function is updated,
leading to a new posterior distribution that will be approximated by VI-NF, producing, in turn,
new samples for the next surrogate model update, and so on. Additional details can be found
in Wang et al. (2022).

Adaptive Annealing

Annealing is a technique to parametrically smooth a target density to improve sampling
efficiency and accuracy during inference. In the discrete case, this is achieved by incrementing
an inverse temperature 𝑡𝑘 and setting 𝑝𝑘(𝑧, 𝑥) = 𝑝𝑡𝑘(𝑧, 𝑥), for 𝑘 = 0,… ,𝐾, where 0 < 𝑡0 <
⋯ < 𝑡𝐾 ≤ 1. The result of exponentiation produces a smooth unimodal distribution for a
sufficiently small 𝑡0, recovering the target density as 𝑡𝑘 approaches 1. In other words, annealing
provides a continuous deformation from an easier to approximate unimodal distribution to a
desired target density.

A linear annealing scheduler with fixed temperature increments is often used in practice (see,
e.g., Rezende & Mohamed (2015)), where 𝑡𝑗 = 𝑡0 + 𝑗(1 − 𝑡0)/𝐾 for 𝑗 = 0,… ,𝐾 with
constant increments 𝜖 = (1 − 𝑡0)/𝐾. Intuitively, small temperature changes are desirable
to carefully explore the parameter spaces at the beginning of the annealing process, whereas
larger changes can be taken as 𝑡𝑘 increases, after annealing has helped to capture important
features of the target distribution (e.g., locating all the relevant modes).

The AdaAnn scheduler determines the increment 𝜖𝑘 that approximately produces a pre-defined
change in the KL divergence between two distributions annealed at~𝑡𝑘 and 𝑡𝑘+1 = 𝑡𝑘 + 𝜖𝑘,
respectively. Letting the KL divergence equal a constant 𝜏2/2, where 𝜏 is referred to as the
KL tolerance, the step size 𝜖𝑘 becomes

𝜖𝑘 = 𝜏/√𝕍𝑝𝑡𝑘 [log 𝑝(𝑧, 𝑥)]. (2)

The denominator is large when the support of the annealed distribution 𝑝𝑡𝑘(𝑧, 𝑥) is wider than
the support of the target 𝑝(𝑧, 𝑥), and progressively reduces with increasing 𝑡𝑘. Further detail
on the derivation of the expression for 𝜖𝑘 can be found in Cobian et al. (2023).

Numerical benchmarks
Simple two-dimensional map with Gaussian likelihood

A model 𝑓 ∶ ℝ2 → ℝ2 is chosen in this experiment having the closed-form expression

𝑓(𝑧) = 𝑓(𝑧1, 𝑧2) = (𝑧31/10 + exp(𝑧2/3), 𝑧31/10 − exp(𝑧2/3))𝑇.

Observations 𝑥 are generated as

𝑥 = 𝑥∗ + 0.05 |𝑥∗| ⊙ 𝑥0, (3)

Wang et al. (2024). LINFA: a Python library for variational inference with normalizing flow and annealing. Journal of Open Source Software, 9(96),
6309. https://doi.org/10.21105/joss.06309.

6

https://doi.org/10.21105/joss.06309

where 𝑥0 ∼ 𝒩(0, 𝐼2) and ⊙ is the Hadamard product. We set the true model parameters at
𝑧∗ = (3, 5)𝑇, with output 𝑥∗ = 𝑓(𝑧∗) = (7.99,−2.59)𝑇, and simulate 50 sets of observations
from (3). The likelihood of 𝑧 given 𝑥 is assumed Gaussian, and we adopt a noninformative
uniform prior 𝑝(𝑧). We allocate a budget of 4 × 4 = 16 model solutions to the pre-grid and
use the rest to adaptively calibrate ̂𝑓 using 2 samples every 1000 normalizing flow iterations.

Results in terms of loss profile, variational approximation, and posterior predictive distribution
are shown in Figure 1.

Figure 1: Results from the simple two-dimensional map. Loss profile (left), posterior samples (center),
and posterior predictive distribution (right).

High-dimensional example

We consider a map 𝑓 ∶ ℝ5 → ℝ4 expressed as

𝑓(𝑧) = 𝐴𝑔(𝑒𝑧),

where 𝑔𝑖(𝑟) = (2 ⋅ |2 𝑎𝑖 − 1| + 𝑟𝑖)/(1 + 𝑟𝑖) with 𝑟𝑖 > 0 for 𝑖 = 1,… , 5 is the Sobol’ function
(Sobol’, 2003) and 𝐴 is a 4 × 5 matrix. We also set

𝑎 = (0.084, 0.229, 0.913, 0.152, 0.826)𝑇 and 𝐴 = 1√
2
⎛⎜⎜⎜
⎝

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

⎞⎟⎟⎟
⎠

.

The true parameter vector is 𝑧∗ = (2.75, −1.5, 0.25, −2.5, 1.75)𝑇. While the Sobol’ function
is bijective and analytic, 𝑓 is over-parameterized and non identifiabile. This is also confirmed by
the fact that the curve segment 𝛾(𝑡) = 𝑔−1(𝑔(𝑧∗)+ 𝑣 𝑡) ∈ 𝑍 gives the same model solution as
𝑥∗ = 𝑓(𝑧∗) = 𝑓(𝛾(𝑡)) ≈ (1.4910, 1.6650, 1.8715, 1.7011)𝑇 for 𝑡 ∈ (−0.0153, 0.0686], where
𝑣 = (1,−1, 1,−1, 1)𝑇. This is consistent with the one-dimensional null-space of the matrix 𝐴.
We also generate synthetic observations from the Gaussian distribution 𝑥 = 𝑥∗+0.01⋅|𝑥∗|⊙𝑥0
with 𝑥0 ∼ 𝒩(0, 𝐼5), and results shown in Figure 2.

Wang et al. (2024). LINFA: a Python library for variational inference with normalizing flow and annealing. Journal of Open Source Software, 9(96),
6309. https://doi.org/10.21105/joss.06309.

7

https://doi.org/10.21105/joss.06309

Figure 2: Results from the high-dimensional example. The top row contains the loss profile (left) and
samples from the posterior predictive distribution plus the available observations (right). Samples from
the posterior distribution are instead shown in the bottom row.

Two-element Windkessel Model

The two-element Windkessel model (often referred to as the RC model) is the simplest
representation of the human systemic circulation and requires two parameters, i.e., a resistance
𝑅 ∈ [100, 1500] Barye⋅ s/ml and a capacitance 𝐶 ∈ [1 × 10−5, 1 × 10−2] ml/Barye. We
provide a periodic time history of the aortic flow (see Wang et al. (2022) for additional
details) and use the RC model to predict the time history of the proximal pressure 𝑃𝑝(𝑡),
specifically its maximum, minimum, and average values over a typical heart cycle, while
assuming the distal resistance 𝑃𝑑(𝑡) as a constant in time, equal to 55 mmHg. In our
experiment, we set the true resistance and capacitance as 𝑧∗𝐾,1 = 𝑅∗ = 1000 Barye⋅ s/ml and
𝑧∗𝐾,2 = 𝐶∗ = 5 × 10−5 ml/Barye, and determine 𝑃𝑝(𝑡) from a RK4 numerical solution of the
following algebraic-differential system

𝑄𝑑 =
𝑃𝑝 − 𝑃𝑑

𝑅
,

𝑑𝑃𝑝

𝑑𝑡
=

𝑄𝑝 −𝑄𝑑

𝐶
, (4)

where 𝑄𝑝 is the flow entering the RC system and 𝑄𝑑 is the distal flow. Synthetic observations
are generated by adding Gaussian noise to the true model solution 𝑥∗ = (𝑥∗

1, 𝑥∗
2, 𝑥∗

3) = (𝑃𝑝,min,
𝑃𝑝,max, 𝑃𝑝,avg) = (78.28, 101.12, 85.75), i.e., 𝑥 follows a multivariate Gaussian distribution
with mean 𝑥∗ and a diagonal covariance matrix with entries 0.05 𝑥∗

𝑖 , where 𝑖 = 1, 2, 3
corresponds to the maximum, minimum, and average pressures, respectively. The aim is to
quantify the uncertainty in the RC model parameters given 50 repeated pressure measurements.
We imposed a non-informative prior on 𝑅 and 𝐶. Results are shown in Figure 3.

Figure 3: Results from the RC model. Loss profile (left), posterior samples (center) for R and C, and the
posterior predictive distribution for 𝑃𝑝,min and 𝑃𝑝,max (right, 𝑃𝑝,avg not shown).

Three-element Wndkessel Circulatory Model (NoFAS + AdaAnn)

The three-parameter Windkessel or RCR model is characterized by proximal and distal resistance
parameters 𝑅𝑝, 𝑅𝑑 ∈ [100, 1500] Barye⋅s/ml, and one capacitance parameter 𝐶 ∈ [1 ×
10−5, 1 × 10−2] ml/Barye. This model is not identifiable. The average distal pressure is only

Wang et al. (2024). LINFA: a Python library for variational inference with normalizing flow and annealing. Journal of Open Source Software, 9(96),
6309. https://doi.org/10.21105/joss.06309.

8

https://doi.org/10.21105/joss.06309

affected by the total system resistance, i.e. the sum 𝑅𝑝 +𝑅𝑑, leading to a negative correlation
between these two parameters. Thus, an increment in the proximal resistance is compensated
by a reduction in the distal resistance (so the average distal pressure remains the same) which,
in turn, reduces the friction encountered by the flow exiting the capacitor. An increase in the
value of 𝐶 is finally needed to restore the average, minimum and maximum pressure. This
leads to a positive correlation between 𝐶 and 𝑅𝑑.

The output consists of the maximum, minimum, and average values of the proximal pressure
𝑃𝑝(𝑡), i.e., (𝑃𝑝,min, 𝑃𝑝,max, 𝑃𝑝,avg) over one heart cycle. The true parameters are 𝑧∗𝐾,1 =
𝑅∗

𝑝 = 1000 Barye⋅s/ml, 𝑧∗𝐾,2 = 𝑅∗
𝑑 = 1000 Barye⋅s/ml, and 𝐶∗ = 5 × 10−5 ml/Barye. The

proximal pressure is computed from the solution of the algebraic-differential system

𝑄𝑝 =
𝑃𝑝 − 𝑃𝑐

𝑅𝑝
, 𝑄𝑑 = 𝑃𝑐 − 𝑃𝑑

𝑅𝑑
, 𝑑 𝑃𝑐

𝑑 𝑡
=

𝑄𝑝 −𝑄𝑑

𝐶
,

where the distal pressure is set to 𝑃𝑑 = 55 mmHg. Synthetic observations are gen-
erated from 𝑁(𝜇,Σ), where 𝜇 = (𝑓1(𝑧∗), 𝑓2(𝑧∗), 𝑓3(𝑧∗))𝑇 = (𝑃𝑝,min, 𝑃𝑝,max, 𝑃𝑝,ave)𝑇 =
(100.96, 148.02, 116.50)𝑇 and Σ is a diagonal matrix with entries (5.05, 7.40, 5.83)𝑇. The
budgeted number of true model solutions is 216; the fixed surrogate model is evaluated on
a 6 × 6 × 6 = 216 pre-grid while the adaptive surrogate is evaluated with a pre-grid of size
4 × 4 × 4 = 64 and the other 152 evaluations are adaptively selected.

This example also demonstrates how NoFAS can be combined with annealing for improved
convergence. The results in Figure 4 are generated using the AdaAnn adaptive annealing
scheduler with intial inverse temperature 𝑡0 = 0.05, KL tolerance 𝜏 = 0.01 and a batch
size of 100 samples. The number of parameter updates is set to 500, 5000 and 5 for 𝑡0, 𝑡1
and 𝑡0 < 𝑡 < 𝑡1, respectively and 1000 Monte Carlo realizations are used to evaluate the
denominator in equation (2). The posterior samples capture well the nonlinear correlation
among the parameters and generate a fairly accurate posterior predictive distribution that
overlaps with the observations. Additional details can be found in Wang et al. (2022) and
Cobian et al. (2023).

Figure 4: Results from the RCR model. The top row contains the loss profile (left) and samples from
the posterior predictive distribution plus the available observations (right). Samples from the posterior
distribution are instead shown in the bottom row.

Wang et al. (2024). LINFA: a Python library for variational inference with normalizing flow and annealing. Journal of Open Source Software, 9(96),
6309. https://doi.org/10.21105/joss.06309.

9

https://doi.org/10.21105/joss.06309

True Mode 1
Value Post. Mean Post. SD
𝛽1 = 10 10.0285 0.1000
𝛽2 = ±

√
20 4.2187 0.1719

𝛽3 = 0.5 0.4854 0.0004
𝛽4 = 10 10.0987 0.0491
𝛽5 = 5 5.0182 0.1142
𝛽6 = 0 0.1113 0.0785
𝛽7 = 0 0.0707 0.0043
𝛽8 = 0 -0.1315 0.1008
𝛽9 = 0 0.0976 0.0387
𝛽10 = 0 0.1192 0.0463

Table 1: Posterior mean and standard deviation for positive mode in the modified Friedman test case.

Friedman 1 model (AdaAnn)

We consider a modified version of the Friedman 1 dataset (Friedman, 1991) to examine the
performance of our adaptive annealing scheduler in a high-dimensional context. According to
the original model in Friedman (1991), the data are generated as

𝑦𝑖 = 𝜇𝑖(𝛽) + 𝜖𝑖, where 𝜇𝑖(𝛽) = 𝛽1sin(𝜋𝑥𝑖,1𝑥𝑖,2) + 𝛽2(𝑥𝑖,3 − 𝛽3)2 +∑10
𝑗=4 𝛽𝑗𝑥𝑖,𝑗, (5)

where 𝜖𝑖 ∼ 𝒩(0, 1). We made a slight modification to the model in (5) as

𝜇𝑖(𝛽) = 𝛽1sin(𝜋𝑥𝑖,1𝑥𝑖,2) + 𝛽2
2(𝑥𝑖,3 − 𝛽3)2 +∑10

𝑗=4 𝛽𝑗𝑥𝑖,𝑗, (6)

and set the true parameter combination to 𝛽 = (𝛽1,… , 𝛽10) = (10,±
√
20, 0.5, 10, 5, 0, 0, 0, 0, 0).

Note that both (5) and (6) contain linear, nonlinear, and interaction terms of the input
variables 𝑋1 to 𝑋10, five of which (𝑋6 to 𝑋10) are irrelevant to 𝑌. Each 𝑋 is drawn
independently from 𝒰(0, 1). We used R package tgp (Gramacy, 2007) to generate a Friedman1
dataset with a sample size of 𝑛=1000. We impose a non-informative uniform prior 𝑝(𝛽)
and, unlike the original modal, we now expect a bimodal posterior distribution of 𝛽. Results
in terms of marginal statistics and their convergence for the mode with positive 𝑧𝐾,2 are
illustrated in Table 1 and Figure 5.

Figure 5: Loss profile (left) and posterior marginal statistics (right) for positive mode in the modified
Friedman test case.

Hyperparameters in LINFA

This section contains the list of all hyperparameters in the library, their default values, and a
description of the functionalities they control. General hyperparameters are listed in Table 6,

Wang et al. (2024). LINFA: a Python library for variational inference with normalizing flow and annealing. Journal of Open Source Software, 9(96),
6309. https://doi.org/10.21105/joss.06309.

10

https://doi.org/10.21105/joss.06309

those related to the optimization process in Table 5, and to the output folder and files in
Table 2. Hyperparameters for the proposed NoFAS and AdaAnn approaches are listed in
Table 3 and Table 7, respectively. Finally, a hyperparameter used to select the hardware device
is described in Table 4.

Table 2: Output parameters

Option Type Description

output_dir string Name of output folder where results files are saved.
log_file string Name of the log file which stores the iteration number,

annealing temperature, and value of the loss function
at each iteration.

seed int Seed for the random number generator.

Table 3: Surrogate model parameters (NoFAS)

Option Type Description

n_sample int Batch size used when saving results to the disk (i.e.,
once every save_interval iterations).

calibrate_interval int Number of NF iteration between successive updates of
the surrogate model (default 1000).

budget int Maximum allowable number of true model evaluations.
surr_pre_it int Number of pre-training iterations for surrogate model

(default 40000).
surr_upd_it int Number of iterations for the surrogate model update

(default 6000).
surr_folder string Folder where the surrogate model is stored (default

'./').
use_new_surr bool Start by pre-training a new surrogate and ignore existing

surrogates (default True).
store_surr_interval int Save interval for surrogate model (None for no save,

default None).

Table 4: Device parameters

Option Type Description

no_cuda bool Do not use GPU acceleration.

Table 5: Optimizer and learning rate parameters

Option Type Description

optimizer string Type of SGD optimizer (default 'Adam').
lr float Learning rate (default 0.003).
lr_decay float Learning rate decay (default 0.9999).
lr_scheduler string Type of learning rate scheduler ('StepLR' or

'ExponentialLR').
lr_step int Number of steps before learning rate reduction for the

step scheduler.
log_interval int Number of iterations between successive loss printouts

(default 10).

Wang et al. (2024). LINFA: a Python library for variational inference with normalizing flow and annealing. Journal of Open Source Software, 9(96),
6309. https://doi.org/10.21105/joss.06309.

11

https://doi.org/10.21105/joss.06309

Table 6: General parameters

Option Type Description

name str Name of the experiment.
flow_type str type of normalizing flow ('maf','realnvp').
n_blocks int Number of normalizing flow layers (default 5).
hidden_size int Number of neurons in MADE and RealNVP hidden

layers (default 100).
n_hidden int Number of hidden layers in MADE (default 1).
activation_fn str Activation function for MADE network used by MAF

(default 'relu').
input_order str Input order for MADE mask creation ('sequential' or

'random', default 'sequential').
batch_norm_order bool Adds batchnorm layer after each MAF or RealNVP layer

(default True).
save_interval int How often to save results from the normalizing flow

iterations. Saved results include posterior samples, loss
profile, samples from the posterior predictive distribution,
observations, and marginal statistics.

input_size int Input dimensionality (default 2).
batch_size int Number of samples from the basic distribution generated

at each iteration (default 100).
true_data_num int Number of additional true model evaluations at each

surrogate model update (default 2).
n_iter int Total number of NF iterations (default 25001).

Table 7: Parameters for the adaptive annealing scheduler (AdaAnn)

Option Type Description

annealing bool Flag to activate the annealing scheduler. If this is False,
the target posterior distribution is left unchanged during
the iterations.

scheduler string Type of annealing scheduler ('AdaAnn' or 'fixed', de-
fault 'AdaAnn').

tol float KL tolerance. It is kept constant during inference and
used in the numerator of equation (2).

t0 float Initial inverse temperature.
N int Number of batch samples during annealing.
N_1 int Number of batch samples at 𝑡 = 1.
T_0 int Number of initial parameter updates at 𝑡0.
T int Number of parameter updates after each temperature

update. During such updates the temperature is kept
fixed.

T_1 int Number of parameter updates at 𝑡 = 1
M int Number of Monte Carlo samples used to evaluate the

denominator in equation (2).

References
Abril-Pla, O., Andreani, V., Carroll, C., Dong, L., Fonnesbeck, C. J., Kochurov, M., Kumar,

R., Lao, J., Luhmann, C. C., Martin, O. A., & others. (2023). PyMC: A modern, and
comprehensive probabilistic programming framework in Python. PeerJ Computer Science,
9, e1516. https://doi.org/10.7717/peerj-cs.1516

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh,
R., Szerlip, P., Horsfall, P., & Goodman, N. D. (2019). Pyro: Deep universal probabilistic
programming. Journal of Machine Learning Research, 20(28), 1–6.

Wang et al. (2024). LINFA: a Python library for variational inference with normalizing flow and annealing. Journal of Open Source Software, 9(96),
6309. https://doi.org/10.21105/joss.06309.

12

https://doi.org/10.7717/peerj-cs.1516
https://doi.org/10.21105/joss.06309

Brennan, M., Bigoni, D., Zahm, O., Spantini, A., & Marzouk, Y. (2020). Greedy inference
with structure-exploiting lazy maps. Advances in Neural Information Processing Systems,
33, 8330–8342.

Cobian, E. R., Hauenstein, J. D., Liu, F., & Schiavazzi, D. E. (2023). AdaAnn: Adaptive anneal-
ing scheduler for probability density approximation. International Journal for Uncertainty
Quantification, 13. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2022043110

Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real NVP. arXiv
Preprint arXiv:1605.08803.

El Moselhy, T. A., & Marzouk, Y. M. (2012). Bayesian inference with optimal maps. Journal
of Computational Physics, 231(23), 7815–7850. https://doi.org/10.1016/j.jcp.2012.07.022

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics,
19(1), 1–67. https://doi.org/10.1214/aos/1176347963

Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating marginal
densities. Journal of the American Statistical Association, 85(410), 398–409. https:
//doi.org/10.1080/01621459.1990.10476213

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6,
721–741. https://doi.org/10.1109/TPAMI.1984.4767596

Germain, M., Gregor, K., Murray, I., & Larochelle, H. (2015). MADE: Masked autoencoder
for distribution estimation. International Conference on Machine Learning, 881–889.

Gramacy, R. B. (2007). Tgp: An R package for Bayesian nonstationary, semiparametric
nonlinear regression and design by treed Gaussian process models. Journal of Statistical
Software, 19, 1–46. https://doi.org/10.18637/jss.v019.i09

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. https://doi.org/10.1093/biomet/57.1.97

Huggins, B., Li, C., Tobaben, M., Aarnos, M. J., & Acerbi, L. (2023). PyVBMC: Efficient
Bayesian inference in Python. Journal of Open Source Software, 8(86), 5428. https:
//doi.org/10.21105/joss.05428

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. International Conference on Machine Learning, 448–456.

Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions.
Advances in Neural Information Processing Systems, 31.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2016). Im-
proved variational inference with inverse autoregressive flow. Advances in Neural Information
Processing Systems, 29, 4743–4751.

Kobyzev, I., Prince, S. J., & Brubaker, M. A. (2020). Normalizing flows: An introduction
and review of current methods. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(11), 3964–3979. https://doi.org/10.1109/TPAMI.2020.2992934

Luttinen, J. (2016). Bayespy: Variational Bayesian inference in Python. The Journal of
Machine Learning Research, 17 (1), 1419–1424.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953).
Equation of state calculations by fast computing machines. The Journal of Chemical
Physics, 21(6), 1087–1092. https://doi.org/10.1063/1.1699114

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B.
(2021). Normalizing flows for probabilistic modeling and inference. The Journal of Machine
Learning Research, 22(1), 2617–2680.

Wang et al. (2024). LINFA: a Python library for variational inference with normalizing flow and annealing. Journal of Open Source Software, 9(96),
6309. https://doi.org/10.21105/joss.06309.

13

https://doi.org/10.1615/Int.J.UncertaintyQuantification.2022043110
https://doi.org/10.1016/j.jcp.2012.07.022
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1080/01621459.1990.10476213
https://doi.org/10.1080/01621459.1990.10476213
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.18637/jss.v019.i09
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.21105/joss.05428
https://doi.org/10.21105/joss.05428
https://doi.org/10.1109/TPAMI.2020.2992934
https://doi.org/10.1063/1.1699114
https://doi.org/10.21105/joss.06309

Papamakarios, G., Pavlakou, T., & Murray, I. (2017). Masked autoregressive flow for density
estimation. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, & R. Garnett (Eds.), Advances in neural information processing systems (Vol.
30). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/
6c1da886822c67822bcf3679d04369fa-Paper.pdf

Rezende, D., & Mohamed, S. (2015). Variational inference with normalizing flows. International
Conference on Machine Learning, 1530–1538.

Siahkoohi, A., Rizzuti, G., Louboutin, M., Witte, P., & Herrmann, F. (2021). Preconditioned
training of normalizing flows for variational inference in inverse problems. Third Symposium
on Advances in Approximate Bayesian Inference. https://openreview.net/forum?id=
P9m1sMaNQ8T

Sobol’, I. M. (1967). On the distribution of points in a cube and the approximate evaluation
of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7(4), 784–802.
https://doi.org/10.1016/0041-5553(67)90144-9

Sobol’, I. M. (2003). Theorems and examples on high dimensional model representation.
Reliability Engineering and System Safety, 79(2), 187–193. https://doi.org/10.1016/
S0951-8320(02)00229-6

Su, B., Wang, Y., Schiavazzi, D. E., & Liu, F. (2023). Differentially private normalizing
flows for density estimation, data synthesis, and variational inference with application to
electronic health records. arXiv Preprint arXiv:2302.05787.

Villani, C., & others. (2009). Optimal transport: Old and new (Vol. 338). Springer.
https://doi.org/10.1007/978-3-540-71050-9

Wainwright, M. J., Jordan, M. I., & others. (2008). Graphical models, exponential families,
and variational inference. Foundations and Trends® in Machine Learning, 1(1–2), 1–305.
https://doi.org/10.1561/2200000001

Wang, Y., Liu, F., & Schiavazzi, D. E. (2022). Variational inference with NoFAS: Nor-
malizing flow with adaptive surrogate for computationally expensive models. Journal of
Computational Physics, 467, 111454. https://doi.org/10.1016/j.jcp.2022.111454

Wang et al. (2024). LINFA: a Python library for variational inference with normalizing flow and annealing. Journal of Open Source Software, 9(96),
6309. https://doi.org/10.21105/joss.06309.

14

https://proceedings.neurips.cc/paper_files/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf
https://openreview.net/forum?id=P9m1sMaNQ8T
https://openreview.net/forum?id=P9m1sMaNQ8T
https://doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1016/S0951-8320(02)00229-6
https://doi.org/10.1016/S0951-8320(02)00229-6
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1561/2200000001
https://doi.org/10.1016/j.jcp.2022.111454
https://doi.org/10.21105/joss.06309

	Summary
	Statement of need
	Capabilities
	Related software modules and packages for variational inference

	Numerical benchmarks
	Conclusion and Future Work
	Acknowledgements
	Appendix
	Background theory
	Variational inference with normalizing flow
	MAF and RealNVP
	Normalizing flow with adaptive surrogate (NoFAS)
	Adaptive Annealing

	Numerical benchmarks
	Simple two-dimensional map with Gaussian likelihood
	High-dimensional example
	Two-element Windkessel Model
	Three-element Wndkessel Circulatory Model (NoFAS + AdaAnn)
	Friedman 1 model (AdaAnn)
	Hyperparameters in LINFA

	References

