
Imbalance: A comprehensive multi-interface Julia
toolbox to address class imbalance
Essam Wisam 1* and Anthony Blaom 2*

1 Cairo University, Egypt 2 University of Auckland, New Zealand * These authors contributed equally.
DOI: 10.21105/joss.06310

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @sylvaticus
• @ArneTillmann

Submitted: 17 October 2023
Published: 18 March 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Given a set of observations that each belong to a certain class, supervised classification aims
to learn a classification model that can predict the class of a new, unlabeled observation
(Cunningham et al., 2008). This modeling process finds extensive application in real-life
scenarios, including but not limited to medical diagnostics, recommendation systems, credit
scoring, and sentiment analysis.

In various real-world scenarios where supervised classification is employed, such as those
pertaining to the detection of particular conditions like fraud, faults, pollution, or rare diseases,
a severe discrepancy between the number of observations in each class can occur. This is known
as class imbalance. This poses a problem if assumptions inherent in the classification model
imply hindered performance when the model is trained on imbalanced data as is commonly
the case (Ali et al., 2015). Two prevalent strategies for mitigating class imbalance, when it
poses a problem to the classification model, involve either increasing the representation of less
frequently occurring classes through oversampling or reducing instances of more frequently
occurring classes through undersampling. It may be also possible to achieve even greater
performance by combining both approaches in a sequential pipeline (Zeng et al., 2016) or by
undersampling the data multiple times and training the classification model on each resampled
dataset to form an ensemble model that aggregates results from different model instances (Liu
et al., 2009). Contrary to undersampling, oversampling, or their combination, the ensemble
approach possesses the ability to address class imbalance while making use of the entire dataset
and without generating synthetic data.

Statement of Need
A substantial body of literature in the field of machine learning and statistics is devoted to
addressing the class imbalance issue. This predicament has often been aptly labeled the “curse
of class imbalance,” as noted in (Picek et al., 2018) and (Kubát & Matwin, 1997) which
follows from the pervasive nature of the issue across diverse real-world applications and its
pronounced severity; a classifier may incur an extraordinarily large performance penalty in
response to training on imbalanced data.

The literature encompasses a myriad of oversampling and undersampling techniques to approach
the class imbalance issue. These include SMOTE (Chawla et al., 2002) which operates by
generating synthetic examples along the lines joining existing ones, SMOTE-N and SMOTE-NC
(Chawla et al., 2002) which are variants of SMOTE that can handle categorical data. The sheer
number of SMOTE variants makes them a body of literature on their own. Notably, the most
widely cited variant of SMOTE is BorderlineSMOTE (Han et al., 2005). Other well-established
oversampling techniques include RWO (Zhang & Li, 2014) and ROSE (Menardi & Torelli, 2012)
which operate by estimating probability densities and sampling from them to generate synthetic
points. On the other hand, the literature also encompasses many undersampling techniques.

Wisam, & Blaom. (2024). Imbalance: A comprehensive multi-interface Julia toolbox to address class imbalance. Journal of Open Source Software,
9(95), 6310. https://doi.org/10.21105/joss.06310.

1

https://orcid.org/0009-0009-1198-7166
https://orcid.org/0000-0001-6689-886X
https://doi.org/10.21105/joss.06310
https://github.com/openjournals/joss-reviews/issues/6310
https://github.com/JuliaAI/Imbalance.jl
https://doi.org/10.5281/zenodo.10823254
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/sylvaticus
https://github.com/ArneTillmann
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06310


Cluster undersampling (Lin et al., 2016) and condensed nearest neighbors (Hart, 1968) are two
prominent examples that attempt to reduce the number of points while preserving the structure
or classification boundary of the data. Furthermore, methods that combine oversampling and
undersampling such as SMOTETomek (Zeng et al., 2016) are also present. The motivation
behind these methods is that when undersampling is not random, it can filter out noisy or
irrelevant oversampled data. Lastly, resampling with ensemble learning has also been presented
in the literature with EasyEnsemble being the most well-known approach of that type (Liu et
al., 2009).

The existence of a toolbox with techniques that harness this wealth of research is imperative to
the development of novel approaches to the class imbalance problem and for machine learning
research broadly. Aside from addressing class imbalance in a general machine learning research
setting, such a toolbox can help in class imbalance research settings by making it possible to
juxtapose different methods, compose them together, or form variants of them without having
to reimplement them from scratch. In prevalent programming languages, such as Python, a
variety of such toolboxes already exist, such as imbalanced-learn (Lemaître et al., 2016) and
SMOTE-variants (Kovács, 2019). Meanwhile, Julia (Bezanson et al., 2017), a well-known
programming language with over 40M downloads (Tuychiev, 2023), has been lacking a similar
toolbox to address the class imbalance issue in general multi-class and heterogeneous data
settings. This has served as the primary motivation for the creation of the Imbalance.jl

toolbox, which we introduce in the subsequent section.

Imbalance.jl
In this work, we present, Imbalance.jl, a software toolbox implemented in the Julia pro-
gramming language that offers over 10 well-established techniques that help address the class
imbalance issue. Additionally, we present a companion package, MLJBalancing.jl, which:
(i) facilitates the inclusion of resampling methods in pipelines with classification models via
the BalancedModel construct; and (ii) implements a general version of the EasyEnsemble
algorithm presented in (Liu et al., 2009).

The toolbox offers a pure functional interface for each method implemented. For example,
SMOTE can be used in the following fashion:

Xover, yover = smote(X, y)

Here Xover, yover are X, y after oversampling.

A ratios hyperparameter or similar is always present to control the degree of oversampling or
undersampling to be done for each class. All hyperparameters for a resampling method have
default values that can be overridden.

The set of resampling techniques implemented in either Imbalance.jl or MLJBalancing.jl

are shown in the table below. Note that although no combination resampling techniques
are explicitly presented, they are easy to form using the BalancedModel wrapper found in
MLJBalancing.jl which can wrap an arbitrary number of resamplers in sequence.

Table 1: Resampling techniques implemented in Imbalance.jl and MLJBalancing.jl.

Technique Type Supported Data Types
BalancedBaggingClassifier Ensemble Continuous and/or nominal
Borderline SMOTE1 Oversampling Continuous
Cluster Undersampler Undersampling Continuous
Edited Nearest Neighbors
Undersampler

Undersampling Continuous

Random Oversampler Oversampling Continuous and/or nominal
Random Undersampler Undersampling Continuous and/or nominal

Wisam, & Blaom. (2024). Imbalance: A comprehensive multi-interface Julia toolbox to address class imbalance. Journal of Open Source Software,
9(95), 6310. https://doi.org/10.21105/joss.06310.

2

https://doi.org/10.21105/joss.06310


Technique Type Supported Data Types
Random Walk Oversampler Oversampling Continuous and/or nominal
ROSE Oversampling Continuous
SMOTE Oversampling Continuous
SMOTE-N Oversampling Nominal
SMOTE-NC Oversampling Continuous and nominal
Tomek Links Undersampler Undersampling Continuous

Imbalance.jl Design Principles
The toolbox implementation follows a specific set of design principles in terms of the imple-
mented techniques, interface support, developer experience and testing, and user experience.

Implemented Techniques

• Should support all four major types of resampling approaches (oversampling, undersam-
pling, combination, ensemble)

• Should be generally compatible with multi-class settings
• Should offer solutions to heterogeneous data settings (continuous and nominal data)
• When possible, preference should be given to techniques that are more common in the

literature or industry

Methods implemented in the Imbalance.jl toolbox indeed meet all aforementioned design
principles for the implemented techniques. The one-vs-rest scheme as proposed in (Fernández
et al., 2013) was used to generalize binary technique to multi-class when needed.

Interface Support

• Should support both matrix and table type inputs
• Target variable may or may not be given as a separate column
• Should expose a pure functional implementation, but also support popular Julia machine

learning interfaces
• Should be possible to wrap an arbitrary number of resampler models with a classification

model to behave as a unified model

Methods implemented in the Imbalance.jl toolbox meet all the interface design principles
above. It particularly implements the MLJ (Blaom et al., 2020) and TableTransforms interface
for each method. BalancedModel from MLJBalancing.jl also allows fusing an arbitrary number
of resampling models and a classifier together to behave as one unified model.

Developer Experience and Testing

• There should exist a developer guide to encourage and guide contribution
• Functions should be implemented in smaller units to aid in testing
• Testing coverage should be maximized; even the most basic functions should be tested
• Features commonly used by multiple resampling techniques should be implemented in a

single function and reused
• Should document all functions, including internal ones
• Comments should be included to justify or simplify written implementations when needed

This set of design principles is also satisfied by Imbalance.jl. Implemented techniques are
tested by testing smaller units that form them. Aside from that, end-to-end tests are performed
for each technique by testing properties and characteristics of the technique or by using the
imbalanced-learn toolbox (Lemaître et al., 2016) from Python and comparing outputs.

Wisam, & Blaom. (2024). Imbalance: A comprehensive multi-interface Julia toolbox to address class imbalance. Journal of Open Source Software,
9(95), 6310. https://doi.org/10.21105/joss.06310.

3

https://doi.org/10.21105/joss.06310


User Experience

• Functional documentation should be comprehensive and clear
• Examples (with shown output) that work after copy-pasting should accompany each

method
• An illustrative visual example that presents a plot or animation should preferably accom-

pany each method
• A practical example that uses the method with real data should preferably accompany

each method
• If an implemented method lacks an online explanation, an article that explains the

method after it is implemented should be preferably written

The Imbalance.jl documentation indeed satisfies this set of design principles. Methods are
each associated with an example that can be copy-pasted, a visual example that demonstrates
the operation of the technique, and possibly, an example that utilizes it with a real-world
dataset to improve the performance of a classification model.

Author Contributions
Design: E. Wisam, A. Blaom. Implementation, tests and documentation: E. Wisam. Code
and documentation review: A. Blaom. The authors would like to acknowledge the financial
support provided by the Google Summer of Code program, which made this project possible.

References
Ali, A., Shamsuddin, S. M. Hj., & Ralescu, A. L. (2015). Classification with class imbalance

problem: A review. Soft Computing Models in Industrial and Environmental Applications.
https://api.semanticscholar.org/CorpusID:26644563

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to
numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Blaom, A. D., Király, F. J., Lienart, T., Simillides, Y., Arenas, D., & Vollmer, S. J. (2020).
MLJ: A julia package for composable machine learning. J. Open Source Softw., 5, 2704.
https://doi.org/10.21105/joss.02704

Chawla, N., Bowyer, K., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority
over-sampling technique. ArXiv, abs/1106.1813. https://doi.org/10.1613/jair.953

Cunningham, P., Cord, M., & Delany, S. J. (2008). Supervised learning. In M. Cord &
P. Cunningham (Eds.), Machine learning techniques for multimedia: Case studies on
organization and retrieval (pp. 21–49). Springer Berlin Heidelberg. https://doi.org/10.
1007/978-3-540-75171-7_2

Fernández, A., López, V., Galar, M., Jesús, M. J. del, & Herrera, F. (2013). Analysing the
classification of imbalanced data-sets with multiple classes: Binarization techniques and
ad-hoc approaches. Knowl. Based Syst., 42, 97–110. https://doi.org/10.1016/J.KNOSYS.
2013.01.018

Han, H., Wang, W., & Mao, B. (2005). Borderline-SMOTE: A new over-sampling method
in imbalanced data sets learning. International Conference on Intelligent Computing.
https://doi.org/10.1007/11538059_91

Hart, P. E. (1968). The condensed nearest neighbor rule (corresp.). IEEE Trans. Inf. Theory,
14, 515–516. https://doi.org/10.1109/TIT.1968.1054155

Kovács, G. (2019). Smote-variants: A Python implementation of 85 minority oversampling
techniques. Neurocomputing, 366, 352–354. https://doi.org/10.1016/j.neucom.2019.06.
100

Wisam, & Blaom. (2024). Imbalance: A comprehensive multi-interface Julia toolbox to address class imbalance. Journal of Open Source Software,
9(95), 6310. https://doi.org/10.21105/joss.06310.

4

https://api.semanticscholar.org/CorpusID:26644563
https://doi.org/10.1137/141000671
https://doi.org/10.21105/joss.02704
https://doi.org/10.1613/jair.953
https://doi.org/10.1007/978-3-540-75171-7_2
https://doi.org/10.1007/978-3-540-75171-7_2
https://doi.org/10.1016/J.KNOSYS.2013.01.018
https://doi.org/10.1016/J.KNOSYS.2013.01.018
https://doi.org/10.1007/11538059_91
https://doi.org/10.1109/TIT.1968.1054155
https://doi.org/10.1016/j.neucom.2019.06.100
https://doi.org/10.1016/j.neucom.2019.06.100
https://doi.org/10.21105/joss.06310


Kubát, M., & Matwin, S. (1997). Addressing the curse of imbalanced training sets: One-sided
selection. International Conference on Machine Learning. https://api.semanticscholar.org/
CorpusID:18370956

Lemaître, G., Nogueira, F., & Aridas, C. K. (2016). Imbalanced-learn: A Python toolbox
to tackle the curse of imbalanced datasets in machine learning. ArXiv, abs/1609.06570.
https://api.semanticscholar.org/CorpusID:1426815

Lin, W.-C., Tsai, C.-F., Hu, Y.-H., & Jhang, J.-S. (2016). Clustering-based undersampling in
class-imbalanced data. Inf. Sci., 409, 17–26. https://doi.org/10.1016/j.ins.2017.05.008

Liu, X.-Y., Wu, J., & Zhou, Z.-H. (2009). Exploratory undersampling for class-imbalance
learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39,
539–550. https://doi.org/10.1109/TSMCB.2008.2007853

Menardi, G., & Torelli, N. (2012). Training and assessing classification rules with imbalanced
data. Data Mining and Knowledge Discovery, 28, 92–122. https://doi.org/10.1007/
s10618-012-0295-5

Picek, S., Heuser, A., Jović, A., Bhasin, S., & Regazzoni, F. (2018). The curse of class
imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2019, 209–237. https://doi.org/10.13154/tches.
v2019.i1.209-237

Tuychiev, B. (2023). The rise of Julia. https://www.datacamp.com/blog/the-rise-of-julia-is-it-worth-learning-in-2022

Zeng, M., Zou, B., Wei, F., Liu, X., & Wang, L. (2016). Effective prediction of three common
diseases by combining SMOTE with tomek links technique for imbalanced medical data.
2016 IEEE International Conference of Online Analysis and Computing Science (ICOACS),
225–228. https://doi.org/10.1109/ICOACS.2016.7563084

Zhang, H., & Li, M. (2014). RWO-sampling: A random walk over-sampling approach to
imbalanced data classification. Inf. Fusion, 20, 99–116. https://doi.org/10.1016/j.inffus.
2013.12.003

Wisam, & Blaom. (2024). Imbalance: A comprehensive multi-interface Julia toolbox to address class imbalance. Journal of Open Source Software,
9(95), 6310. https://doi.org/10.21105/joss.06310.

5

https://api.semanticscholar.org/CorpusID:18370956
https://api.semanticscholar.org/CorpusID:18370956
https://api.semanticscholar.org/CorpusID:1426815
https://doi.org/10.1016/j.ins.2017.05.008
https://doi.org/10.1109/TSMCB.2008.2007853
https://doi.org/10.1007/s10618-012-0295-5
https://doi.org/10.1007/s10618-012-0295-5
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
https://www.datacamp.com/blog/the-rise-of-julia-is-it-worth-learning-in-2022
https://doi.org/10.1109/ICOACS.2016.7563084
https://doi.org/10.1016/j.inffus.2013.12.003
https://doi.org/10.1016/j.inffus.2013.12.003
https://doi.org/10.21105/joss.06310

	Summary
	Statement of Need
	Imbalance.jl
	Imbalance.jl Design Principles
	Implemented Techniques
	Interface Support
	Developer Experience and Testing
	User Experience

	Author Contributions
	References


