
PyProximal - scalable convex optimization in Python
Matteo Ravasi 1¶, Marcus Valtonen Örnhag 2, Nick Luiken 1, Olivier
Leblanc 3, and Eneko Uruñuela 4

1 Earth Science and Engineering, Physical Sciences and Engineering (PSE), King Abdullah University of
Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia 2 Ericsson Research, Lund,
Sweden. 3 ISPGroup, INMA/ICTEAM, UCLouvain, Louvain-la-Neuve, Belgium. 4 Basque Center on
Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain. ¶ Corresponding author

DOI: 10.21105/joss.06326

Software
• Review
• Repository
• Archive

Editor: Stefan Appelhoff
Reviewers:

• @nirum
• @ewu63

Submitted: 31 December 2023
Published: 13 March 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
A broad class of problems in scientific disciplines ranging from image processing and astrophysics,
to geophysics and medical imaging call for the optimization of convex, non-smooth objective
functions. Whereas practitioners are usually familiar with gradient-based algorithms, commonly
used to solve unconstrained, smooth optimization problems, proximal algorithms can be viewed
as analogous tools for non-smooth and possibly constrained versions of such problems. These
algorithms sit at a higher level of abstraction than gradient-based algorithms and require a
basic operation to be performed at each iteration: the evaluation of the so-called proximal
operator of the functional to be optimized. PyProximal is a Python-based library aimed at
democratizing the application of convex optimization to scientific problems; it provides the
required building blocks (i.e., proximal operators and algorithms) to define and solve complex,
convex objective functions in a high-level, abstract fashion, shielding users away from any
unneeded mathematical and implementation details.

Statement of need
PyProximal is a Python library for convex optimization, developed as an integral part of the
PyLops framework. It provides practitioners with an easy-to-use framework to define and solve
composite convex objective functions arising in many modern inverse problems. Its API is
designed to offer a class-based and user-friendly interface to proximal operators, coupled with
function-based optimizers; because of its modular design, researchers in the field of convex
optimization can also benefit from this library in a number of ways when developing new
algorithms: first, they can easily include their newly developed proximal operators and solvers;
second, they can compare these methods with state-of-the-art algorithms already provided in
the library.

Several projects in the Python ecosystem provide implementations of proximal operators and/or
algorithms, which present some overlap with those available in PyProximal. A (possibly not
exhaustive) list of other projects is composed of proxalgs (Maheswaranathan et al., 2019),
proxmin (Moolekamp & Melchior, 2018), The Proximity Operator Repository (Chierchia et al.,
2024), ProxImaL (Heide et al., 2016), and pyxu (Simeoni et al., 2024). A key common feature
of all of the above mentioned packages is to be self-contained; as such, not only proximal
operators and solvers are provided, but also linear operators that are useful for the applications
that the package targets. Moreover, to the best of our knowledge, all of these packages provide
purely CPU-based implementations (apart from pyxu). On the other hand, PyProximal heavily
relies on and seamlessly integrates with PyLops (Ravasi & Vasconcelos, 2020), a Python library
for matrix-free linear algebra and optimization. As such, it can easily handle problems with
millions of unknowns and inherits the interchangle CPU/GPU backend of PyLops (Ravasi,

Ravasi et al. (2024). PyProximal - scalable convex optimization in Python. Journal of Open Source Software, 9(95), 6326. https://doi.org/10.
21105/joss.06326.

1

https://orcid.org/0000-0003-0020-2721
https://orcid.org/0000-0001-8687-227X
https://orcid.org/0000-0003-3307-1748
https://orcid.org/0000-0003-3641-1875
https://orcid.org/0000-0001-6849-9088
https://doi.org/10.21105/joss.06326
https://github.com/openjournals/joss-reviews/issues/6326
http://github.com/pylops/pyproximal/
https://doi.org/10.5281/zenodo.10805997
https://stefanappelhoff.com/
https://orcid.org/0000-0001-8002-0877
https://github.com/nirum
https://github.com/ewu63
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06326
https://doi.org/10.21105/joss.06326

2021). More specifically, PyLops is leveraged in the implementation of proximal operators that
require access to linear operators (e.g., numerical derivatives) and/or least-squares solvers (e.g.,
conjugate gradient). Whilst libraries with similar capabilities exist in the Python ecosystem,
their design usually leads to a tight coupling between linear and proximal operators, and their
respective solvers. On the other hand, by following the Separation of Concerns (SoC) design
principle, the overlap between PyLops and PyProximal is reduced to a minimum, easing both
their development and maintenance, as well as allowing newcomers to learn how to solve
inverse problems in a step-by-step fashion. As such, PyProximal can be ultimately described
as a light-weight extension of PyLops that users of the latter can easily learn and adopt with
minimal additional effort.

Mathematical framework
Convex optimization is routinely used to solve problems of the form (Parikh, 2013):

min
x

𝑓(x) + 𝑔(Lx) (1)

where 𝑓 and 𝑔 are possibly non-smooth convex functionals and L is a linear operator. A special
case appearing in many scientific applications is represented by 𝑓 = 1/2‖y −𝒜(x)‖22. Here,
𝒜 is a (possibly non-linear) modeling operator, describing the underlying physical process that
links the unknown model vector x to the vector of observations y. In this case, we usually
refer to 𝑔 as the regularizer, where one or multiple functions are added to the data misfit term
to promote certain features in the sought after solution and/or constraint the solution to fall
within a given set of allowed vectors.

A common feature of all proximal algorithms is represented by the fact that one must be
able to repeatedly evaluate the proximal operator of 𝑓 and/or 𝑔. The proximal operator of a
function 𝑓 is defined as

𝑝𝑟𝑜𝑥𝜏𝑓(x) = min
y

𝑓(y) + 1
2𝜏

||y − x||22 (2)

Whilst evaluating a proximal operator does itself require solving an optimization problem,
these problems often admit closed form solutions or can be solved very efficiently with ad-hoc
specialized methods. Several of such proximal operators are efficiently implemented in the
PyProximal library.

Finally, there exists three main families of proximal algorithms that can be used to solve various
flavors of Equation 1, namely:

• Proximal Gradient (Combettes & Pesquet, 2011): this method, also commonly referred
to as the Forward-Backward Splitting (FBS) algorithm, is usually the preferred choice
when L = I (i.e. identity operator). Accelerated versions such as the FISTA and TwIST
algorithms exist and are usually preferred to the vanilla FBS method;

• Alternating Direction Method of Multipliers (Boyd et al., 2011): this method is based
on a splitting strategy and can be used for a broader class of problem than FBS and its
accelerated versions.

• Primal-Dual (Chambolle & Pock, 2011): another popular algorithm able to tackle
problems in the form of Equation 1 with any choice of L. It reformulates the original
problem into its primal-dual version and solves a saddle optimization problem.

PyProximal provides implementations for these three families of algorithms; moreover, all
solvers include additional features such as back-tracking for automatic selection of step-sizes,
logging of the objective function evolution through iterations, and possibility to inject custom
callbacks.

Ravasi et al. (2024). PyProximal - scalable convex optimization in Python. Journal of Open Source Software, 9(95), 6326. https://doi.org/10.
21105/joss.06326.

2

https://doi.org/10.21105/joss.06326
https://doi.org/10.21105/joss.06326

Code structure
PyProximal’s modular and easy-to-use Application Programming Interface (API) allows scien-
tists to define and solve convex objective functions by means of proximal algorithms. The API
is composed of two main part as shown in Fig. 1.

The first part contains the entire suite of proximal operators, which are class-based objects
subclassing the pylops.ProxOperator parent class. For each of these operators, the solution
to the proximal optimization problem in Equation 2 (and/or the dual proximal problem) is
implemented in the prox (and/or dualprox) method. As in most cases a closed-form solution
exists for such a problem, our implementation provides users with the most efficient way
to evaluate a proximal operator. The second part comprises of so-called proximal solvers,
optimization algorithms that are suited to solve problems of the form in Equation 1. Finally,
some specialized solvers that rely on one or more of the previously described optimizers are
also provided.

Figure 1: Schematic representation of the PyProximal API.

Representative PyProximal Use Cases
Examples of PyProximal applications in different scientific fields include:

• Joint inversion and segmentation of subsurface models: when inverting geophysical
data for subsurface priorities, prior information can be provided to inversion process in
the form of discrete number of rock units; this can be parametrized in terms of their
expected mean (or most likely value). Ravasi & Birnie (2022) and Romero et al. (2023)
frame such a problem as a joint inversion and segmentation task, where the underlying
objective function is optimized in alternating fashion using the Primal-Dual algorithm.

• Plug-and-Play (PnP) priors: introduced in 2013 by Venkatakrishnan et al. (2013), the
PnP framework lays its foundation on the interpretation of the proximal operator as a
denoising problem; as such, powerful statistical or deep learning based denoisers are used
to evaluate the proximal operator of implicit regularizers. Romero et al. (2022) applies
this concept in the context of seismic inversion, achieving results of superior quality in
comparison to traditional model-based regularization techniques.

Ravasi et al. (2024). PyProximal - scalable convex optimization in Python. Journal of Open Source Software, 9(95), 6326. https://doi.org/10.
21105/joss.06326.

3

https://doi.org/10.21105/joss.06326
https://doi.org/10.21105/joss.06326

• Multi-Core Fiber Lensless Imaging (MCFLI) is a computational imaging technique to
reconstruct biological samples at cellular scale. Leveraging the rank-one projected
interferometric sensing of the MCFLI has been shown to improve the efficiency of the
acquisition process (Leblanc et al., 2023); this entails solving a regularized inverse problem
with the proximal gradient method. Depending on the image to be reconstructed, the
regularization term may for instance be 𝐿1 or TV.

References
Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization

and statistical learning via the alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3. https://doi.org/10.1561/2200000016

Chambolle, A., & Pock, T. (2011). A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of Mathematical Imaging and Vision, 40. https:
//doi.org/10.1007/s10851-010-0251-1

Chierchia, G., Chouzenoux, E., Combettes, P. L., & Pesquet, J.-C. (2024). The proximity
operator repository. https://proximity-operator.net/

Combettes, P., & Pesquet, J.-C. (2011). Proximal splitting methods in signal processing.
Springer Optimization; Its Applications. https://doi.org/10.1007/978-1-4419-9569-8_10

Heide, F., Diamond, S., Nießner, M., Ragan-Kelley, J., Heidrich, W., & Wetzstein, G. (2016).
ProxImaL: Efficient image optimization using proximal algorithms. 35(4). https://doi.org/
10.1145/2897824.2925875

Leblanc, O., Hofer, M., Sivankutty, S., Rigneault, H., & Jacques, L. (2023). Interferometric
Lensless Imaging: Rank-one Projections of Image Frequencies with Speckle Illuminations.
ArXiv e-Prints. https://doi.org/10.1109/tci.2024.3359178

Maheswaranathan, N., Zapp, S., & Poole, B. (2019). Proxalgs. https://github.com/
ganguli-lab/proxalgs/

Moolekamp, F., & Melchior, P. (2018). Block-simultaneous direction method of multipliers: a
proximal primal-dual splitting algorithm for nonconvex problems with multiple constraints.
Optimization and Engineering, 19. https://doi.org/10.1007/s11081-018-9380-y

Parikh, N. (2013). Foundations; Trends in Optimization. https://doi.org/10.1561/2400000003

Ravasi, M. (2021). Leveraging GPUs for matrix-free optimization with PyLops. Fifth EAGE
Workshop on High Performance Computing for Upstream, 1. https://doi.org/10.3997/
2214-4609.2021612003

Ravasi, M., & Birnie, C. (2022). A joint inversion-segmentation approach to assisted seismic
interpretation. Geophysical Journal International, 228. https://doi.org/10.1093/gji/
ggab388

Ravasi, M., & Vasconcelos, I. (2020). PyLops - A linear-operator Python library for scalable
algebra and optimization. SoftwareX, 11. https://doi.org/10.1016/j.softx.2019.100361

Romero, J., Luiken, M. C. N., & Ravasi, M. (2022). Plug and Play Post-Stack Seismic
Inversion with CNN-Based Denoisers. Second EAGE Subsurface Intelligence Workshop, 1.
https://doi.org/10.3997/2214-4609.2022616015

Romero, J., Luiken, N., & Ravasi, M. (2023). Seeing through the CO2 plume: Joint
inversion-segmentation of the Sleipner 4D seismic data set. The Leading Edge, 42.
https://doi.org/10.1190/tle42070457.1

Simeoni, M., Kashani, S., Rué-Queralt, J., & Developers, P. (2024). Pyxu-org/pyxu: pyxu.
Zenodo. https://doi.org/10.5281/zenodo.4486431

Ravasi et al. (2024). PyProximal - scalable convex optimization in Python. Journal of Open Source Software, 9(95), 6326. https://doi.org/10.
21105/joss.06326.

4

https://doi.org/10.1561/2200000016
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1007/s10851-010-0251-1
https://proximity-operator.net/
https://doi.org/10.1007/978-1-4419-9569-8_10
https://doi.org/10.1145/2897824.2925875
https://doi.org/10.1145/2897824.2925875
https://doi.org/10.1109/tci.2024.3359178
https://github.com/ganguli-lab/proxalgs/
https://github.com/ganguli-lab/proxalgs/
https://doi.org/10.1007/s11081-018-9380-y
https://doi.org/10.1561/2400000003
https://doi.org/10.3997/2214-4609.2021612003
https://doi.org/10.3997/2214-4609.2021612003
https://doi.org/10.1093/gji/ggab388
https://doi.org/10.1093/gji/ggab388
https://doi.org/10.1016/j.softx.2019.100361
https://doi.org/10.3997/2214-4609.2022616015
https://doi.org/10.1190/tle42070457.1
https://doi.org/10.5281/zenodo.4486431
https://doi.org/10.21105/joss.06326
https://doi.org/10.21105/joss.06326

Venkatakrishnan, S. V., Bouman, C. A., & Wohlberg, B. (2013). Plug-and-Play Priors for
Model Based Reconstruction. 2013 IEEE Global Conference on Signal and Information
Processing. https://doi.org/10.1109/GlobalSIP.2013.6737048

Ravasi et al. (2024). PyProximal - scalable convex optimization in Python. Journal of Open Source Software, 9(95), 6326. https://doi.org/10.
21105/joss.06326.

5

https://doi.org/10.1109/GlobalSIP.2013.6737048
https://doi.org/10.21105/joss.06326
https://doi.org/10.21105/joss.06326

	Summary
	Statement of need
	Mathematical framework
	Code structure
	Representative PyProximal Use Cases
	References

