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Summary
How to keep dikes safe with rising sea levels? Why are ripples formed in sand? What can we
prepare for landing on Mars? At the center of these questions is the understanding of how the
grains, as a self-organizing material, collide, flow, or get jammed and compressed. State-of-
the-art algorithms allow for simulating millions of grains individually in a computer. However,
such computations can take very long and produce complex data difficult to interpret and be
upscaled to large-scale applications such as sediment transport and debris flows. GrainLearning
is an open-source toolbox with machine learning and statistical inference modules allowing
for emulating granular material behavior and learning material uncertainties from real-life
observations.

To understand what GrainLearning does, let us consider a mechanical test performed on
a granular material. The macroscopic response of such material, in terms of stress-strain
evolution curves, is obtained from the test. It would be interesting to have a digital equivalent
material to further investigate, using numerical simulations such as the discrete element method
(DEM), how such material would behave under other mechanical constraints. To do so, the
first step is defining a contact model governing interactions between grains in DEM. This
involves multiple a-priori unknown constants, such as friction coefficients or Young’s modulus,
whose chosen values will determine the macroscopic behavior of the simulation. By repeatedly
comparing the simulation results with provided experimental data, GrainLearning allows one to
calibrate or infer these values such that the mechanical response in the DEM simulation is the
closest to that observed in the real-world experiment.

While it was initially developed for DEM simulations of granular materials, GrainLearning
can be extended to other simulation frameworks such as FEM, CFD, LBM, and even other
techniques such as agent-based modeling. In the same vein, the framework is not exclusive for
granular materials.

Statement of need
Understanding the link from particle motions to the macroscopic material response is essential to
develop accurate models for processes such as 3D printing with metal powders, pharmaceutical
powder compaction, flow and handling of cereals in the alimentary industry, grinding and
transport of construction materials. Discrete Element Method (DEM) has been used widely as
the fundamental tool to produce the data to understand such link. However, DEM simulations
are highly computationally intensive and some of the parameters used in the contact laws
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cannot be directly measured experimentally.

GrainLearning (Cheng et al., 2023) arises as a tool for Bayesian calibration of such computational
models, which means the model parameters are estimated with a certain level of uncertainty,
constrained on (noisy) real-world observations. Effectively, this makes the simulations digital
twins of real-world processes with uncertainties propagated on model outputs, which then can
be used for optimization or decision-making.

Conventionally, the calibration of contact parameters at the grain scale is accomplished by
trial and error, by comparing the macroscopic responses between simulation and experiments.
This is due to the difficulty of obtaining precise measurements at the contact level and the
randomness of grain properties (e.g., shape, stiffness, and asphericity). In the last decade,
optimization (Do et al., 2018) and design-of-experiment (Hanley et al., 2011) approaches such
as Latin Hypercube sampling and genetic algorithms have been used. However, the amount of
model runs is still too large. For this reason, Gaussian process regression (Fransen et al., 2021)
or artificial neural networks (Benvenuti et al., 2016) were tested as surrogate- or meta-models
for the DEM. GrainLearning combines probabilistic learning of parameter space and sampling
to achieve Bayesian optimization efficiently.

Functionality
GrainLearning’s core functionality is illustrated in Figure 1. GrainLearning started in the
geotechnical engineering community and was primarily used for granular materials in quasi-
static, laboratory conditions (Cheng et al., 2018, 2019). These include triaxial (Hartmann et
al., 2022; Li et al., 2024) and oedometric (Cheng et al., 2019) compressions of soil samples. In
the particle technology community, attempts with GrainLearning have been made to identify
contact parameters for polymer and pharmaceutical powders against angle-of-repose (Nguyen,
2022), shear cell (Thornton et al., 2023), and sintering experiments (Alvarez et al., 2022).
Satisfactory results have been obtained in simulation cases where the grains were in dynamic
regimes or treated under multi-physical processes.

• Calibration or parameter inference: By means of Sequential Monte Carlo filtering
GrainLearning can infer and update model parameters. By learning the underlying
distribution using a variational Gaussian model, highly probable zones are identified and
sampled iteratively until a tolerance for the overall uncertainty is reached. This process
requires the input of: a time series reference data, the ranges of the parameters to infer
and a tolerance. The software iteratively minimizes the discrepancy between the model
solution and the reference data.
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Figure 1: Elements of the trade in the calibration process. 1. Draw initial values of the parameters to
calibrate. 2. Run the dynamic system with the parameters. 3. With the reference data or observation,
estimate the posterior distribution via the Bayesian filtering. 4. Check convergence of the parameter
inference, if the process has not converged: 5. Define a Gaussian mixture from the examples of this
iteration and sample the parameters for the next iteration. 6. Next iteration step. For more details check
the iterative Bayesian filter section of GrainLearning’s documentation.

• Surrogate modeling: Besides using direct simulation results (e.g. DEM) GrainLearning
offers the capability of building surrogates (e.g. recurrent neural networks) as an alter-
native to computationally expensive DEM simulations, effectively reducing the cost by
several orders of magnitude.
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