
EllipticForest: A Direct Solver Library for Elliptic
Partial Differential Equations on Adaptive Meshes
Damyn Chipman 1¶

1 Boise State University, USA ¶ Corresponding author
DOI: 10.21105/joss.06339

Software
• Review
• Repository
• Archive

Editor: Vissarion Fisikopoulos
Reviewers:

• @sandeshkatakam
• @lukeolson

Submitted: 24 January 2024
Published: 26 April 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
EllipticForest is a software library with utilities to solve elliptic partial differential equations
(PDEs) with adaptive mesh refinement (AMR) using a direct matrix factorization. It implements
a quadtree-adaptive variation of the Hierarchical Poincaré-Steklov (HPS) method (A. Gillman
& Martinsson, 2014). The HPS method is a direct method for solving elliptic PDEs based on
the recursive merging of Poincaré-Steklov operators (Quarteroni & Valli, 1991). EllipticForest
is built on top of the parallel and highly efficient mesh library p4est (Burstedde et al., 2011) for
mesh adaptivity and mesh management. Distributed memory parallelism is implemented through
the Message Passing Interface (MPI) (Message Passing Interface Forum, 2023). EllipticForest
wraps the fast, cyclic-reduction methods found in the FISHPACK library (Swarztrauber et
al., 1999) and updated in the FISHPACK90 library (Adams et al., 2016) at the lowest grid
level (called leaf patches). In addition, for more general elliptic problems, EllipticForest wraps
solvers from the PDE solver library PETSc (Balay et al., 2024). The numerical methods used
in EllipticForest are detailed by Chipman et al. (2024). A key feature of EllipticForest is the
ability for users to extend the solver interface classes to implement custom solvers on leaf
patches. EllipticForest is an implementation of the HPS method to be used as a software
library, either as a standalone to solve elliptic PDEs or for coupling with other scientific libraries
for broader applications.

Statement of Need
Elliptic PDEs arise in a wide-range of physics and engineering applications, including fluid
modeling, electromagnetism, astrophysics, heat transfer, and more. Solving elliptic PDEs is
often one of the most computationally expensive steps in numerical algorithms due to the
need to solve large systems of equations. Parallel algorithms are desirable in order solve larger
systems at scale on small to large computing clusters. Communication patterns for elliptic
solvers make implementing parallel solvers difficult due to to the global nature of the underlying
mathematics. In addition, adaptive mesh refinement adds coarse-fine interfaces and more
complex meshes that make development and scalability difficult. The solvers implemented
in EllipticForest address these complexities through proven numerical methods and efficient
software implementations.

The general form of elliptic PDEs that EllipticForest is tailored to solve is the following:

𝛼(𝑥, 𝑦)∇ ⋅ [𝛽(𝑥, 𝑦)∇𝑢(𝑥, 𝑦)] + 𝜆(𝑥, 𝑦)𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦)

where 𝛼(𝑥, 𝑦), 𝛽(𝑥, 𝑦), 𝜆(𝑥, 𝑦), and 𝑓(𝑥, 𝑦) are known functions in 𝑥 and 𝑦 and the goal is
to solve for 𝑢(𝑥, 𝑦). Currently, EllipticForest solves the above problem in a rectangular domain
Ω = [𝑥𝐿, 𝑥𝑈] × [𝑦𝐿, 𝑦𝑈]. The above PDE is discretized using a finite-volume approach using a

Chipman. (2024). EllipticForest: A Direct Solver Library for Elliptic Partial Differential Equations on Adaptive Meshes. Journal of Open Source
Software, 9(96), 6339. https://doi.org/10.21105/joss.06339.

1

https://orcid.org/0000-0001-6600-3720
https://doi.org/10.21105/joss.06339
https://github.com/openjournals/joss-reviews/issues/6339
https://github.com/DamynChipman/EllipticForest
https://doi.org/10.5281/zenodo.11035127
https://vissarion.github.io
https://orcid.org/0000-0002-0780-666X
https://github.com/sandeshkatakam
https://github.com/lukeolson
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06339


standard five-point stencil yielding a second-order accurate solution. This leads to a standard
linear system of equations of the form

Au = f

which is solved via the HPS method, a direct matrix factorization method.

Similar to other direct methods, the HPS method is comprised of two stages: a build stage
and a solve stage. In the build stage, a set of solution operators are formed that act as the
factorization of the system matrix corresponding to the discretization stencil. This is done
with 𝒪(𝑁3/2) complexity, where 𝑁 is the size of the system matrix. In the solve stage, the
factorization is applied to boundary and non-homogeneous data to solve for the solution vector
with linear complexity 𝒪(𝑁). The build and the solve stages are recursive applications of
a merge and a split algorithm, respectively. The advantages of this approach over iterative
methods such as conjugate gradient and multi-grid methods include the ability to apply the
factorization to multiple right-hand side vectors.

In addition, another advantage of the quadtree-adaptive HPS method as implemented in
EllipticForest is the ability to adapt the matrix factorization to a changing grid. When the
mesh changes due to a refining/coarsening criteria, traditional matrix factorizations must
be recomputed. The quadtree-adaptive HPS method can adapt the factorization locally,
eliminating the need to recompute the factorization. This works as the HPS method builds a
set of solution operators that act like a global solution operator. When the mesh changes, the
set can be updated by locally applying the merging and splitting algorithms. This is especially
practical for implicit time-dependent problems that require a full linear solve each time step.

EllipticForest builds upon the p4est mesh library (Burstedde et al., 2011). The quadtree-
adaptive HPS method is uniquely suited for quadtree meshes. p4est, as a parallel and highly
efficient mesh library, provides routines for creating, adapting, and iterating over quadtree
meshes. The routines in EllipticForest wrap or extend the capabilities in p4est. A primary
extension is the development of a path-indexed quadtree. This is in contrast to the leaf-indexed
quadtree implemented in p4est. A path-indexed quadtree is a data structure that stores data
at all nodes in a quadtree, as opposed to just the leaf nodes (see Figure 1). The path-indexed
quadtree data structure is designed to store the various data and operators required in the
quadtree-adaptive HPS method.

The novelty of EllipticForest as software is the implementation of the HPS method for coupling
with other scientific software as well as user extension. Currently, other implementations
of the HPS method are MATLAB or Python codes designed by research groups and used
in-house for solving specific problems (Fortunato et al., 2022; A. Gillman, 2023; Semenov,
2023). EllipticForest is designed to be extended and coupled with external libraries. This paper
highlights the software details including the user-friendly interface to the HPS method and
the ability for users to extend the solver interface using modern object-oriented programming
(OOP) paradigms.

Software Overview
Below, we outline various components of the software implemented in EllipticForest. These
classes and utilities allow the user to create and refine meshes tailored for their use case, initialize
the solver for the elliptic PDE, and visualize the output solution. A user may also extend the
functionality of EllipticForest through inheritance of the Patch classes for user-defined solvers
at the leaf level.

Chipman. (2024). EllipticForest: A Direct Solver Library for Elliptic Partial Differential Equations on Adaptive Meshes. Journal of Open Source
Software, 9(96), 6339. https://doi.org/10.21105/joss.06339.

2

https://doi.org/10.21105/joss.06339


Quadtree
The underlying data structure that encodes the mesh is a path-indexed quadtree. The Quadtree

object is a class that implements a path-indexed quadtree using a NodeMap, which is equivalent
to std::map<std::string, Node<T>*>. The template parameter T refers to the type of data
that is stored on quadtree nodes. The Quadtree implemented in EllipticForest wraps the
p4est leaf-indexed quadtree to create, iterate, and operate on the path-indexed quadtree.
Functions to iterate over the quadtree include traversePreOrder, traversePostOrder, merge,
and split. The traversePreOrder and traversePostOrder functions iterate over the tree in
a pre- and post-order fashion, respectively, and provide the user with access to the node or
node data via a provided callback function. The merge and split functions iterate over the
tree in a post- and pre-order fashion, respectively, and provide the user with access to a family
of nodes, or a group of four siblings and their parent node.

Figure 1: A path-indexed quadtree representation of a mesh. Colors indicate which rank owns that node.
The nodes colored by gradient indicate they are owned by multiple ranks.

Mesh
The user interfaces with the domain discretization through the Mesh class. The Mesh class has
an instance of the Quadtree detailed above. Mesh provides functions to iterate over patches or
cells via iteratePatches or iterateCells.

Mesh also provides the user with an interface to the visualization features of EllipticForest.
A user may add mesh functions via addMeshFunction, which are functions in 𝑥 and 𝑦 that
are defined over the entire mesh. This can either be a mathematical function 𝑓(𝑥, 𝑦) that is
provided via a std::function<double(double x, double y)>, or as a Vector<double> that
has the value of 𝑓(𝑥, 𝑦) at each cell in the domain, ordered by patch and then by the ordering
of patch grid. Once a mesh function is added to the mesh, the user may call toVTK, which
writes the mesh to a parallel, unstructured VTK file format. See the section below on output
and visualization for more information.

Patches
The fundamental building block of the mesh and quadtree structures are the patches. A Patch

is a class that contains data matrices and vectors that store the solution data and operators
needed in the HPS method. A Patch also has an instance of a PatchGrid which represents
the discretization of the problem. Each node in the path-indexed quadtree stores a pointer to
a Patch.

In EllipticForest, the patch, patch grid, patch solver, and patch node factory interfaces are
implemented as a pure virtual interface for the user to extend. Internally, EllipticForest uses

Chipman. (2024). EllipticForest: A Direct Solver Library for Elliptic Partial Differential Equations on Adaptive Meshes. Journal of Open Source
Software, 9(96), 6339. https://doi.org/10.21105/joss.06339.

3

https://doi.org/10.21105/joss.06339


these interfaces to call the implemented solver or discretization. By default, EllipticForest
implements a 2nd-order, finite volume discretization and solver. This implementation is found
under src/Patches/FiniteVolume and each class therein implements the pure virtual interface
of the Patch, PatchGrid, PatchSolver, and AbstractNodeFactory classes. Users may use
the finite volume implementation shipped with EllipticForest, or they may implement different
solvers to be used in the HPS method.

HPS Solver
Once the mesh has been created and refined and the patch solver has been initialized, solving
the elliptic problem on the input mesh is done by creating an instance of the HPSAlgorithm

class. The HPSAlgorithm class has member functions that perform the setup, build, upwards,
and solve stages of the HPS method. As the HPS method is a direct method, once the build
stage has been completed, the upwards and solve stages can be called without rebuilding the
matrix factorization.

Output and Visualization
Once the problem has been solved over the entire mesh, each leaf patch in the mesh has the
solution stored in one of its data vectors, vectorU. This is a discrete representation of the
solution to the PDE.

The user may choose to output the mesh and solution in an unstructured PVTK format using
the VTK functionality built-in. To output to VTK files, the user first adds mesh functions to
the mesh. This includes the solution stored in vectorU after the HPS solve. Then, the user
calls the toVTK member function of the Mesh class. This will write a .pvtu file for the mesh
and a .pvtu file for the quadtree. An example of this output for a Poisson equation is shown
in Figure 2.

Chipman. (2024). EllipticForest: A Direct Solver Library for Elliptic Partial Differential Equations on Adaptive Meshes. Journal of Open Source
Software, 9(96), 6339. https://doi.org/10.21105/joss.06339.

4

https://doi.org/10.21105/joss.06339


Figure 2: Solution of Poisson equation on a quadtree mesh using EllipticForest. The mesh and data are
output in an unstructured PVTK format and visualized with VisIt (Childs et al., 2012).

Acknowledgements
The development of EllipticForest has been funded by the National Science Foundation
(NSF-DMS #1819257) and the Boise State University School of Computing. The author
acknowledges the assistance and guidance of Dr. Donna Calhoun and Dr. Carsten Burstedde
through discussions and direction.

References
Adams, J. C., Swarztrauber, P., & Sweet, R. (2016). FISHPACK90: Efficient Fortran

subprograms for the solution of separable elliptic partial differential equations. Astrophysics
Source Code Library, ascl–1609. https://ui.adsabs.harvard.edu/abs/2016ascl.soft09005A/
abstract

Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P., Buschelman, K.,
Constantinescu, E. M., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W.
D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M. G., … Zhang, J.

Chipman. (2024). EllipticForest: A Direct Solver Library for Elliptic Partial Differential Equations on Adaptive Meshes. Journal of Open Source
Software, 9(96), 6339. https://doi.org/10.21105/joss.06339.

5

https://ui.adsabs.harvard.edu/abs/2016ascl.soft09005A/abstract
https://ui.adsabs.harvard.edu/abs/2016ascl.soft09005A/abstract
https://doi.org/10.21105/joss.06339


(2024). PETSc Web page. https://petsc.org/

Burstedde, C., Wilcox, L., & Ghattas, O. (2011). p4est: Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific Computing,
33(3), 1103–1133. https://doi.org/10.1137/100791634

Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K.,
Miller, M., Harrison, C., Weber, G. H., Krishnan, H., Fogal, T., Sanderson, A., Garth,
C., Bethel, E. W., Camp, D., Rübel, O., Durant, M., Favre, J. M., & Navrátil, P.
(2012). VisIt: An end-user tool for visualizing and analyzing very large data. In High
performance visualization–enabling extreme-scale scientific insight (pp. 357–372). https:
//doi.org/10.1201/b12985-29

Chipman, D., Calhoun, D., & Burstedde, C. (2024). A fast direct solver for elliptic PDEs
on a hierarchy of adaptively refined quadtrees. arXiv Preprint arXiv:2402.14936. https:
//doi.org/10.48550/arXiv.2402.14936

Fortunato, D., Hale, N., & Townsend, A. (2022). ultraSEM: The ultraspherical spectral element
method. In GitHub repository. GitHub. https://github.com/danfortunato/ultraSEM

Gillman, A. (2023). HPS_demos: A collection of codes applying the HPS method. In GitHub
repository. GitHub. https://github.com/agillman20/HPS_Demos

Gillman, A., & Martinsson, P. G. (2014). A direct solver with 𝑂(𝑁) complexity for variable
coefficient elliptic PDEs discretized via a high-order composite spectral collocation method.
SIAM Journal on Scientific Computing, 36(4), A2023–A2046. https://doi.org/10.1137/
130918988

Message Passing Interface Forum. (2023). MPI: A message-passing interface standard version
4.1. https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf

Quarteroni, A., & Valli, A. (1991). Theory and application of Steklov-Poincaré operators for
boundary-value problems. In Applied and industrial mathematics (pp. 179–203). Springer.
https://doi.org/10.1007/978-94-009-1908-2_14

Semenov, I. (2023). Streamer_HPS_DGSEM: Implementation of the spectral element method
for modelling streamer discharges. In GitHub repository. GitHub. https://github.com/
igsemenov/Streamer_HPS_DGSEM

Swarztrauber, P., Sweet, R., & Adams, J. (1999). FISHPACK: Efficient FORTRAN subprograms
for the solution of elliptic partial differential equations. UCAR Publication, July. https:
//doi.org/10.1145/800207.806417

Chipman. (2024). EllipticForest: A Direct Solver Library for Elliptic Partial Differential Equations on Adaptive Meshes. Journal of Open Source
Software, 9(96), 6339. https://doi.org/10.21105/joss.06339.

6

https://petsc.org/
https://doi.org/10.1137/100791634
https://doi.org/10.1201/b12985-29
https://doi.org/10.1201/b12985-29
https://doi.org/10.48550/arXiv.2402.14936
https://doi.org/10.48550/arXiv.2402.14936
https://github.com/danfortunato/ultraSEM
https://github.com/agillman20/HPS_Demos
https://doi.org/10.1137/130918988
https://doi.org/10.1137/130918988
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://doi.org/10.1007/978-94-009-1908-2_14
https://github.com/igsemenov/Streamer_HPS_DGSEM
https://github.com/igsemenov/Streamer_HPS_DGSEM
https://doi.org/10.1145/800207.806417
https://doi.org/10.1145/800207.806417
https://doi.org/10.21105/joss.06339

	Summary
	Statement of Need
	Software Overview
	Quadtree
	Mesh
	Patches
	HPS Solver
	Output and Visualization

	Acknowledgements
	References

