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Summary
The Hofstadter model successfully describes the behavior of non-interacting quantum particles
hopping on a lattice coupled to a gauge field, and hence is ubiquitous in many fields of research,
including condensed matter, optical, and atomic physics. Motivated by this, we introduce
HofstadterTools (https://hofstadter.tools), a Python package that can be used to analyze the
energy spectrum of a generalized Hofstadter model, with any combination of hoppings on any
regular Euclidean lattice. The package can be applied to compute key properties of the band
structure, such as quantum geometry and topology, as well as plot Hofstadter butterflies and
Wannier diagrams that are colored according to their Chern numbers.

Statement of need
The purpose of HofstadterTools is to consolidate the fragmented theory and code relevant to
the Hofstadter model into one well-documented Python package, which can be used easily by
non-specialists as a benchmark or springboard for their own research projects. The Hofstadter
model (Azbel, 1964; Harper, 1955; Hofstadter, 1976) is an iconic tight-binding model in physics
and famously yields a fractal energy spectrum as a function of flux density, as shown in Figs.
1, 2, 3, and 4. Consequently, it is often treated as an add-on to larger numerical packages,
such as WannierTools (Wu et al., 2018), pyqula (Lado, 2021), and DiagHam (Regnault, 2001),
or simply included as supplementary code together with research articles (Bodesheim et al.,
2023). However, the Hofstadter model’s generalizability, interdisciplinary appeal, and recent
experimental realization, motivates us to create a dedicated package that can provide a detailed
analysis of its band structure, in the general case.

1) Generalizability. The Hofstadter model was originally studied in the context of electrons
hopping in a periodic potential coupled to a perpendicular magnetic field. However,
the model transcends this framework and can be extended in numerous directions. For
example, the Peierls phases that arise in the Hamiltonian due to the magnetic field
(Peierls, 1933) can also be generated using artificial gauge fields (Goldman et al., 2014)
or Floquet modulation (Eckardt, 2017). Moreover, the full scope of the Hofstadter model
is still being revealed, with papers on its application to hyperbolic lattices (Stegmaier et
al., 2022), higher-dimensional crystals (Colandrea et al., 2022), and synthesized materials
(Bodesheim et al., 2023), all published within the last couple of years.

2) Interdisciplinary appeal. Owing to its generalizability, interest in the Hofstadter model
goes beyond its well-known connection to condensed matter physics and the quantum
Hall effect (Avron et al., 2003). In mathematics, for example, the difference relation
arising in the solution of the Hofstadter model, known as the Harper equation (Harper,
1955), is a special case of an “almost Mathieu operator”, which is one of the most
studied types of ergodic Schrödinger operator (Avila & Jitomirskaya, 2009; Simon, 2000).
Moreover, in other branches of physics, the Hofstadter model has growing relevance
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in a variety of subfields, including: cold atomic gases (Cooper et al., 2019), acoustic
metamaterials (Ni et al., 2019), and photonics (Zilberberg et al., 2018).

3) Recent experimental realization. Although the Hofstadter model was introduced last
century (Harper, 1955; Peierls, 1933), it has only been experimentally realized within
the last decade. Signatures of the Hofstadter spectrum were first observed in moiré
materials (Dean et al., 2013) and optical flux lattices (Aidelsburger et al., 2013), and
they have since been reproduced in several other experimental platforms (Cooper et al.,
2019; Ni et al., 2019; Roushan et al., 2017; Zilberberg et al., 2018). Not only does
this spur recent theoretical interest, but it also increases the likelihood of experimental
groups entering the field, with the need for a self-contained code repository that can be
quickly applied to benchmark data and related computations.

A prominent use-case of HofstadterTools is to facilitate the study of a rich landscape of
many-body problems. The Hofstadter model is an infinitely-configurable topological flat-band
model and hence, is a popular choice among theorists studying strongly-correlated phenomena,
such as the fractional quantum Hall effect (Andrews et al., 2021; Andrews & Soluyanov, 2020)
and superconductivity (Sahay et al., 2023; Shaffer et al., 2021). Since there is a relationship
between the quantum geometry and topology of single-particle band structures and the stability
of exotic strongly-correlated states (Andrews et al., 2023; Jackson et al., 2015; Ledwith et al.,
2023; Lee et al., 2017; Tian et al., 2023; Wang et al., 2021), HofstadterTools may be used to
guide theorists who are researching quantum many-body systems. More broadly, we hope that
HofstadterTools will find many interdisciplinary applications, and we look forward to expanding
the package in these directions, with help from the community.

Figure 1: Square Lattice (a) Hofstadter butterfly and (b) Wannier diagram for the Hofstadter model
defined with nearest-neighbor hoppings on the square lattice. (a) The energy 𝐸, and (b) the integrated
density of states below the gap 𝑁(𝐸), are plotted as a function of flux density 𝑛𝜙 = 𝐵𝐴min/𝜙0 = 𝑝/499,
where 𝐵 is the perpendicular field strength, 𝐴min is the area of a minimal hopping plaquette, 𝜙0 is the
flux quantum, and 𝑝 is an integer. The 𝑟-th gap is colored with respect to 𝑡 = ∑𝑟

𝑖=0 𝐶𝑖, where 𝐶𝑖 is the
Chern number of band 𝑖. The size of the points in the Wannier diagram is proportional to the size of the
gaps. (Colandrea et al., 2022)

Andrews. (2024). HofstadterTools: A Python package for analyzing the Hofstadter model. Journal of Open Source Software, 9(95), 6356.
https://doi.org/10.21105/joss.06356.

2

https://doi.org/10.21105/joss.06356


Figure 2: Triangular Lattice (a) Hofstadter butterfly and (b) Wannier diagram for the Hofstadter model
defined with nearest-neighbor hoppings on the triangular lattice. (Avron et al., 2014)

Figure 3: Honeycomb Lattice (a) Hofstadter butterfly and (b) Wannier diagram for the Hofstadter
model defined with nearest-neighbor hoppings on the honeycomb lattice. (Agazzi et al., 2014)
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Figure 4: Kagome Lattice (a) Hofstadter butterfly and (b) Wannier diagram for the Hofstadter model
defined with nearest-neighbor hoppings on the kagome lattice. (Jing-Min, 2009)
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