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Summary
Machine Learning is a core building block in novel data-driven applications. Practitioners
face many ambiguous design decisions while developing practical machine learning (ML)
solutions. Automated machine learning (AutoML) facilitates the development of machine
learning applications by providing efficient methods for optimizing hyperparameters, searching
for neural architectures, or constructing whole ML pipelines (Hutter et al., 2019). Thereby,
design decisions such as the choice of modelling, pre-processing, and training algorithm are
crucial to obtaining well-performing solutions. By automatically obtaining ML solutions,
AutoML aims to lower the barrier to leveraging machine learning and reduce the time needed
to develop or adapt ML solutions for new domains or data.

Highly performant software packages for automatically building ML pipelines given data,
so-called AutoML systems, are available and can be used off-the-shelf. Typically, AutoML
systems evaluate ML models sequentially to return a well-performing single best model or
multiple models combined into an ensemble. Existing AutoML systems are typically highly
engineered monolithic software developed for specific use cases to perform well and robustly
under various conditions.

With the growing amount of data and design decisions for ML, there is also a growing need to
improve our understanding of the design decisions of AutoML systems. Current state-of-the-art
systems vary in implemented paradigms (stacking (Erickson et al., 2020; LeDell & Poirier,
2020) vs CASH (Thornton et al., 2013), optimizing a pre-defined pipeline structure (Baudart
et al., 2021; Thornton et al., 2013) vs evolving open-ended pipelines (Olson et al., 2016))
and also use different methods within one paradigm (i.e. Bayesian optimization (Feurer et al.,
2015; Thornton et al., 2013) or Genetic Programming (Gijsbers & Vanschoren, 2019; Olson et
al., 2016) as the optimization algorithm, different search spaces for the same machine learning
algorithm cf. (Feurer et al., 2015; Gijsbers & Vanschoren, 2019; Olson et al., 2016; Thornton
et al., 2013), different post-hoc ensemble methods or even no post-hoc ensembling at all cf.
(Feurer et al., 2015; Imrie et al., 2022; Wang et al., 2021)), raising many research questions
and opportunities to study improved algorithms and novel applications.

AMLTK (Automated Machine Learning ToolKit) is a collection of components that enable
researchers and developers to easily implement AutoML systems without the need for common
boilerplate code. AMLTK addresses this with a modular perspective on AutoML systems,
aiming to cover various existing AutoML system paradigms in principle. It contributes to the
field three-fold: (a) Enabling systematic comparison of AutoML design decisions with a higher
level of reproducibility, (b) fast prototyping and evaluation of new AutoML methods, and (c)
easy adaptation of developed solutions to new tasks.

In addition, it also facilitates easy integration and swapping of components from various
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AutoML tools, for example, an optimizer from SMAC (Lindauer et al., 2022) or Optuna (Akiba
et al., 2019), a search space from ConfigSpace (Lindauer et al., 2019) or Optuna, as well as
the integration with additional tools such as the visualization and analysis tool DeepCAVE
(Sass et al., 2022). These provided integrations are done without the need to modify AMLTK’s
source code, enabling users to extend the framework as their needs require. Overall, AMLTK
lowers the barrier to engaging with AutoML research and, thus, opens up the opportunity to
bundle research efforts towards flexible and effective AutoML systems.

AMLTK is designed for AutoML researchers to develop and study novel AutoML systems and
domain experts to adapt these AutoML systems for novel use cases. AMLTK is based on the
experience of a subset of the authors in developing AutoML systems (Auto-sklearn (Feurer
et al., 2015, 2022) and Auto-PyTorch (Zimmer et al., 2021)) and their effort to unify their
code bases. Last but not least, we also believe that this toolkit will help educate students and
support ML practitioners in engaging with AutoML systems.

Statement of Need
Current AutoML systems are monolithic and provide little opportunity for customization. As a
result, researchers often build new AutoML systems to implement a new methodology. This
results in two issues: (1) it creates a barrier to research on AutoML systems, and (2) it hinders
the fair comparison of new components in AutoML systems. Recent examples of open source
AutoML systems are AutoGluon (Erickson et al., 2020), GAMA (Gijsbers & Vanschoren, 2021,
2019), and Auto-Sklearn (Feurer et al., 2015, 2022).

To give an example for Issue (1), a researcher working on new optimization methods for
AutoML would need to develop all components of an AutoML system in order to evaluate their
method because current systems do not allow for easy replacement of the optimization method,
as pointed out by Mohr & Wever (2023). Also, a researcher wanting to study a variation of an
existing system would need to go through an extensive, potentially undocumented codebase to
find the right place to apply their variation. The tight integration of components allows for
highly efficient systems but poses a high barrier to new research and novel, innovative AutoML
systems.

Issue (2) is also a huge problem. A recent benchmark study (Gijsbers et al., 2023) extensively
compared multiple AutoML systems on a common set of ML tasks. While such benchmarking
efforts are necessary to assess the current state of the art, we note that each system uses its
own implementation of the search space, optimization, evaluation and ensembling, making a
principled comparison and ablation study virtually impossible and leaving potential performance
gains by combining solutions unnoticed. Instead of comparing different methods, researchers
are actually comparing the implementations. By providing a unified toolkit for AutoML,
researchers can focus on comparing the changes they have made while leaving all other parts
of the AutoML system as they were.
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