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Summary
Text augmentation - the process of generating new text samples by applying transformations
to existing samples - is a useful tool for training (Wei & Zou, 2019) and evaluating (Ribeiro et
al., 2020) natural language processing (NLP) models and systems. Despite its utility, existing
libraries are often limited in terms of functionality and flexibility. They are confined to basic
tasks such as text classification or catering to specific downstream use cases such as estimating
robustness (Goel et al., 2021). Recognizing these constraints, Augmenty is a tool for structured
augmentation of text along with its annotations. Augmenty integrates seamlessly with the
popular NLP library spaCy (Honnibal et al., 2020) and seeks to be compatible with all models
and tasks supported by spaCy. Augmenty provides a wide range of augmenters that can be
combined flexibly to create complex augmentation pipelines. It also includes a set of primitives
that can be used to create custom augmenters such as word replacement augmenters. This
functionality allows for augmentations within a range of applications such as named entity
recognition (NER), part-of-speech tagging, and dependency parsing.

Statement of need
Augmentation has proven to be a powerful tool within disciplines such as computer vision
(Wang et al., 2017) and speech recognition (Park et al., 2019) where it is used for both training
more robust models and for evaluating the ability of the models to handle perturbations.
Within NLP augmentation has seen some uses as a tool for generating additional training
data (Wei & Zou, 2019), but has shined as a tool for model evaluation, such as estimating
robustness (Goel et al., 2021) and bias (Lassen et al., 2023), or for creating novel datasets
(Nielsen, 2023).

Despite its utility, existing libraries for text augmentation often exhibit limitations in terms
of functionality and flexibility. Commonly they only provide pure string augmentation which
typically leads to the annotations becoming misaligned with the text. This has limited the
use of augmentation to tasks such as text classification while neglecting structured prediction
tasks such as named entity recognition (NER) or coreference resolution. This has limited the
use of augmentation to a wide range of tasks for training and evaluation.

Existing tools such as textgenie (Pandya, 2023), and textaugment (Marivate & Sefara, 2020)
implement powerful techniques such as backtranslation and paraprashing, which are useful
augmentations for text-classification tasks. However, these tools neglect a category of tasks
that require that the annotations be aligned with the augmentation of the text. For instance,
even simple augmentations such as replacing the named entity “Jane Doe” with “John” will
lead to a misalignment of the NER annotation, part-of-speech tags, etc., which if not properly
handled will lead to a misinterpretation of the model performance or generation of incorrect
training samples.
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Other tools for data augmentation focus on specific downstream applications such as
textattack (Morris et al., 2020) which is useful for adversarial attacks of classification
systems or robustnessgym (Goel et al., 2021) which is useful for evaluating the robustness of
classification systems.

Augmenty introduces a flexible and easy-to-use interface for structured text augmentation,
seeking to augment the annotations along with the text. Augmenty is built to integrate well with
spaCy (Honnibal et al., 2020) and seeks to be compatible with the broad set of tasks supported
by spaCy. Augmenty provides augmenters that take a spaCy Doc-object (but works just as well
with string-objects) and return a new Doc-object with the augmentations applied. This allows
for augmentations of both the text and the annotations present in the Doc-object. Augmenty

does not seek to replace tools such as textattack, but seeks to provide a general-purpose
tool for augmentation of both the text and its annotations. This allows for augmentations
within a range of applications such as named entity recognition, part-of-speech tagging, and
dependency parsing.

Features & Functionality
Augmenty is a Python library that implements augmentations based on spaCy’s Doc object.
spaCy’s Doc object is a container for a text and its annotations. This makes it easy to augment
text and annotations simultaneously. The Doc object can easily be extended to include custom
augmentation not available in spaCy by adding custom attributes to the Doc object. While
Augmenty is built to augment Docs the object is easily converted into strings, lists or other
formats. The annotations within a Doc can be provided either by human annotations or using
a trained model.

Augmenty implements a series of augmenters for token-, span- and sentence-level augmentation.
These augmenters range from primitive augmentations such as word replacement to language-
specific augmenters such as keystroke error augmentations based on a French keyboard layout.
Augmenty also integrates with other libraries such as NLTK (Bird et al., 2009) to allow for
augmentations based on WordNet (Miller, 1994) and allows for specification of static word
vectors (Pennington et al., 2014) to allow for augmentations based on word similarity. Lastly,
augmenty provides a set of utility functions for repeating augmentations, combining augmenters,
or adjusting the percentage of documents that should be augmented. This allows for the
flexible construction of augmentation pipelines specific to the task at hand.

Example Use Cases
Augmenty has already been used in a number of projects. The code base was initially developed
for evaluating the robustness and bias of DaCy (Enevoldsen et al., 2021), a state-of-the-art
Danish NLP pipeline. It is also continually used to evaluate Danish NER systems for biases
and robustness on the DaCy website. Augmenty has also been used to detect intersectional
biases (Lassen et al., 2023) and used within benchmarks of Danish language models (Sloth &
Rybner, 2023).

Besides its existing use cases Augmenty could for example also be used to a) upsample minority
classes without duplicating samples, b) train less biased models by e.g. replacing names with
names of minority groups c) train more robust models e.g. by augmenting with typos or d)
generate pseudo-historical data by augmenting with known spelling variations of words.

Target Audience
The package mainly targets NLP researchers and practitioners who wish to augment their data
for training or evaluation. The package is also targeted at researchers who wish to evaluate
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their models with augmentations or want to generate new datasets.
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