
HiddenMarkovModels.jl: generic, fast and reliable
state space modeling
Guillaume Dalle 1,2,3

1 Information, Learning and Physics laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL),
Station 11, CH-1015 Lausanne 2 Information and Network Dynamics laboratory, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Station 14, CH-1015 Lausanne 3 Statistical Physics of Computation
laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne

DOI: 10.21105/joss.06436

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @DanielRivasMD
• @dmbates

Submitted: 12 September 2023
Published: 05 April 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Hidden Markov Models (or HMMs) are a very popular statistical framework, with numerous
applications ranging from speech recognition to bioinformatics. They characterize a sequence
of observations 𝑌1,… , 𝑌𝑇 by assuming the existence of a hidden sequence of states 𝑋1,… ,𝑋𝑇.
The distribution of a state 𝑋𝑡 can only depend on the previous state 𝑋𝑡−1, and the distribution
of an observation 𝑌𝑡 can only depend on the current state 𝑋𝑡. In addition, both of these
dynamics may be influenced by exogenous control variables 𝑈1,… , 𝑈𝑇. This is a very versatile
and practical set of assumptions: see Rabiner (1989) for an introduction, Cappé et al. (2005)
for a book-length treatment and Bengio & Frasconi (1994) for a seminal discussion of HMMs
with controls.

Given a sequence of observations and a parametric family of HMMs ℙ𝜃, there are several
problems one can face. In generic graphical models, these problems are often intractable,
but HMMs have a tree-like structure that yields exact solution procedures with polynomial
complexity. The package HiddenMarkovModels.jl leverages the Julia language (Bezanson et
al., 2017) to implement those algorithms in a generic, fast and reliable way.

Inference problem Algorithm
Best state sequence argmax𝑋1∶𝑇

ℙ𝜃(𝑋1∶𝑇|𝑌1∶𝑇, 𝑈1∶𝑇) Viterbi
Observation sequence likelihood ℙ𝜃(𝑌1∶𝑇|𝑈1∶𝑇) Forward
State marginals ℙ𝜃(𝑋𝑡|𝑌1∶𝑇, 𝑈1∶𝑇) Forward-

backward
Maximum likelihood parameter argmax𝜃 ℙ𝜃(𝑌1∶𝑇|𝑈1∶𝑇) Baum-

Welch

Statement of need
The initial motivation for HiddenMarkovModels.jl was an application of HMMs to reliability
analysis for the French railway company SNCF (Dalle, 2022). In this industrial use case, the
observations were marked temporal point processes (sequences of timed events with structured
metadata) generated by condition monitoring systems, possibly influenced by the daily activity
of the train unit.

Unfortunately, nearly all implementations of HMMs we surveyed (in Julia and Python) expect
the observations to be generated by a predefined set of distributions, with no temporal
heterogeneity. In Julia, the previous reference package HMMBase.jl (Mouchet, 2023) requires
compliance with the Distributions.jl (Besançon et al., 2021) interface, which precludes

Dalle. (2024). HiddenMarkovModels.jl: generic, fast and reliable state space modeling. Journal of Open Source Software, 9(96), 6436.
https://doi.org/10.21105/joss.06436.

1

https://orcid.org/0000-0003-4866-1687
https://doi.org/10.21105/joss.06436
https://github.com/openjournals/joss-reviews/issues/6436
https://github.com/gdalle/HiddenMarkovModels.jl
https://doi.org/10.5281/zenodo.10931812
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/DanielRivasMD
https://github.com/dmbates
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06436


anything not scalar- or array-valued, let alone point processes. In Python, the numpy-based
hmmlearn (hmmlearn developers, 2023) and the PyTorch-based pomegranate (Schreiber, 2018,
2014/2024) each offer a catalogue of discrete and continuous distributions, but do not allow
for easy extension by the user. The more recent JAX-based dynamax (Chang et al., 2022/2024;
Murphy, 2023; Särkkä & Svensson, 2023) is the only package adopting an extensible interface
with optional controls, similar to ours.

Focusing on Julia specifically, other downsides of HMMBase.jl include the lack of support
for multiple observation sequences, automatic differentiation, sparse transition matrices or
number types beyond 64-bit floating point. Two other Julia packages each provide a subset
of functionalities that HMMBase.jl lacks, namely HMMGradients.jl (Antonello, 2021) and
MarkovModels.jl (Ondel et al., 2022), but they are less developed and ill-suited to uninformed
users.

Package design
HiddenMarkovModels.jl was designed to overcome the limitations mentioned above, following
a few guiding principles.

Our package is generic. Observations can be arbitrary objects, and the associated distributions
only need to implement two methods: a loglikelihood logdensityof(dist, x) and a sampler
rand(rng, x). Number types are not restricted, and automatic differentiation of the sequence
loglikelihood (Qin et al., 2000) is supported both in forward and reverse mode, partly thanks
to ChainRulesCore.jl (White et al., 2022). The extendable AbstractHMM interface allows
incorporating features such as priors or structured transitions, as well as temporal or control
dependency, simply by redefining three methods:

initialization(hmm)

transition_matrix(hmm, control)

obs_distributions(hmm, control)

Our package is fast. Julia’s blend of multiple dispatch and just-in-time compilation delivers
satisfactory speed even when working with unexpected types that Python’s tensor backends
could not easily handle. Inference routines rely on BLAS calls for linear algebra, and exploit
multithreading to process sequences in parallel.

Our package is reliable. It is thoroughly tested and documented, with an extensive API reference
and accessible tutorials. Special care was given to code quality, type stability, and compatibility
checks with various downstream packages (like automatic differentiation packages).

However, our package is also limited in scope. It aims at CPU efficiency for moderately-sized
state spaces, and remains untested on GPU. Furthermore, it does not manipulate probabilities
in the logarithmic domain, but instead uses the scaling trick (Rabiner, 1989) with a variation
borrowed from HMMBase.jl. Thus, its numerical stability might be worse than that of Python
counterparts on challenging instances. Luckily, thanks to unrestricted number types, users are
free to bring in third-party packages like LogarithmicNumbers.jl (Rowley, 2023) to recover
additional precision.

Benchmarks
We compare HiddenMarkovModels.jl, HMMBase.jl, hmmlearn, pomegranate and dynamax on
a test case with univariate Gaussian observations. The reason for this low-dimensional choice
is to spend most of the time in the generic HMM routines themselves, as opposed to the
loglikelihood computations which are problem-specific. The data consists of 50 independent
sequences of length 100 each, with a number of states varying from 2 to 10, to which we
apply all inference algorithms (with Baum-Welch performing 5 iterations).

Dalle. (2024). HiddenMarkovModels.jl: generic, fast and reliable state space modeling. Journal of Open Source Software, 9(96), 6436.
https://doi.org/10.21105/joss.06436.

2

https://doi.org/10.21105/joss.06436


All benchmarks were run in Julia version 1.10.2 with BenchmarkTools.jl (Chen & Revels, 2016),
calling Python with PythonCall.jl (Rowley, 2022), and plotting results with CairoMakie.jl

(Danisch & Krumbiegel, 2021). The comparison code imports HiddenMarkovModels.jl version
0.5.0 (commit f7cf63b), and it is accessible in the libs/HMMComparison/ subfolder of our
GitHub repository. We tried to minimize parallelism effects by running everything on a single
thread, and made the assumption that the Julia-to-Python overhead is negligible compared to
the algorithm runtime.

Figure 1: Benchmark of HMM packages

As we can see, HiddenMarkovModels.jl is the fastest option in Julia, and the second-fastest
overall behind dynamax (we think the large runtimes of dynamax in Baum-Welch might stem
from incorrect benchmarks). The key observation is that we achieved this speedup over
HMMBase.jl while simultaneously increasing generality in half a dozen different ways.

Conclusion
HiddenMarkovModels.jl fills a longstanding gap in the Julia package ecosystem, by providing
an efficient and flexible framework for state space modeling.

Acknowledgements

Work on this package started during my PhD at École des Ponts, in partnership with SNCF
Réseau and SNCF Voyageurs, whose support I acknowledge. It continued during my postdoc-
toral position at EPFL.

My gratitude goes to Maxime Mouchet and Jacob Schreiber, the developers of HMMBase.jl and

Dalle. (2024). HiddenMarkovModels.jl: generic, fast and reliable state space modeling. Journal of Open Source Software, 9(96), 6436.
https://doi.org/10.21105/joss.06436.

3

https://github.com/gdalle/HiddenMarkovModels.jl/commit/f7cf63b48fb4853376071772ce35c55a73f57e5c
https://github.com/gdalle/HiddenMarkovModels.jl/tree/f7cf63b48fb4853376071772ce35c55a73f57e5c/libs/HMMComparison
https://github.com/probml/dynamax/issues/359
https://doi.org/10.21105/joss.06436


pomegranate respectively, for their help and advice. In particular, Maxime agreed to designate
HiddenMarkovModels.jl as the official successor to HMMBase.jl, for which I thank him.

References
Antonello, N. (2021). HMMGradients.jl: Enables computing the gradient of the parameters of

Hidden Markov Models (HMMs). Zenodo. https://doi.org/10.5281/zenodo.4454565

Bengio, Y., & Frasconi, P. (1994). An Input Output HMM Architecture. Advances in Neural
Information Processing Systems, 7. https://proceedings.neurips.cc/paper/1994/hash/
8065d07da4a77621450aa84fee5656d9-Abstract.html

Besançon, M., Papamarkou, T., Anthoff, D., Arslan, A., Byrne, S., Lin, D., & Pearson, J. (2021).
Distributions.jl: Definition and Modeling of Probability Distributions in the JuliaStats
Ecosystem. Journal of Statistical Software, 98, 1–30. https://doi.org/10.18637/jss.v098.i16

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A Fresh Approach to
Numerical Computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671

Cappé, O., Moulines, E., & Rydén, T. (2005). Inference in Hidden Markov Models. Springer
New York. https://doi.org/10.1007/0-387-28982-8

Chang, P., Harper-Donnelly, G., Kara, A., Li, X., Linderman, S., & Murphy, K. (2024).
Dynamax: State Space Models library in JAX. Probabilistic machine learning. https:
//github.com/probml/dynamax (Original work published 2022)

Chen, J., & Revels, J. (2016, August 15). Robust benchmarking in noisy environments.
https://doi.org/10.48550/arXiv.1608.04295

Dalle, G. (2022). Machine learning and combinatorial optimization algorithms, with applications
to railway planning [PhD thesis, École des Ponts ParisTech]. https://pastel.hal.science/
tel-04053322

Danisch, S., & Krumbiegel, J. (2021). Makie.jl: Flexible high-performance data visualization for
Julia. Journal of Open Source Software, 6(65), 3349. https://doi.org/10.21105/joss.03349

hmmlearn developers. (2023). Hmmlearn: Hidden Markov Models in Python, with scikit-learn
like API. hmmlearn. https://github.com/hmmlearn/hmmlearn

Mouchet, M. (2023). HMMBase.jl: Hidden Markov Models for Julia. https://github.com/
maxmouchet/HMMBase.jl

Murphy, K. P. (2023). Probabilistic Machine Learning: Advanced Topics. The MIT Press.
ISBN: 978-0-262-04843-9

Ondel, L., Lam-Yee-Mui, L.-M., Kocour, M., Corro, C. F., & Burget, L. (2022). GPU-
Accelerated Forward-Backward Algorithm with Application to Lattice-Free MMI. ICASSP
2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 8417–8421. https://doi.org/10.1109/ICASSP43922.2022.9746824

Qin, F., Auerbach, A., & Sachs, F. (2000). A Direct Optimization Approach to Hidden
Markov Modeling for Single Channel Kinetics. Biophysical Journal, 79(4), 1915–1927.
https://doi.org/10.1016/S0006-3495(00)76441-1

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77 (2), 257–286. https://doi.org/10.1109/5.18626

Rowley, C. (2022). PythonCall.jl: Python and Julia in harmony. JuliaPy. https://github.com/
JuliaPy/PythonCall.jl

Rowley, C. (2023). LogarithmicNumbers.jl: A logarithmic number system for Julia. https:
//github.com/cjdoris/LogarithmicNumbers.jl

Dalle. (2024). HiddenMarkovModels.jl: generic, fast and reliable state space modeling. Journal of Open Source Software, 9(96), 6436.
https://doi.org/10.21105/joss.06436.

4

https://doi.org/10.5281/zenodo.4454565
https://proceedings.neurips.cc/paper/1994/hash/8065d07da4a77621450aa84fee5656d9-Abstract.html
https://proceedings.neurips.cc/paper/1994/hash/8065d07da4a77621450aa84fee5656d9-Abstract.html
https://doi.org/10.18637/jss.v098.i16
https://doi.org/10.1137/141000671
https://doi.org/10.1007/0-387-28982-8
https://github.com/probml/dynamax
https://github.com/probml/dynamax
https://doi.org/10.48550/arXiv.1608.04295
https://pastel.hal.science/tel-04053322
https://pastel.hal.science/tel-04053322
https://doi.org/10.21105/joss.03349
https://github.com/hmmlearn/hmmlearn
https://github.com/maxmouchet/HMMBase.jl
https://github.com/maxmouchet/HMMBase.jl
https://doi.org/10.1109/ICASSP43922.2022.9746824
https://doi.org/10.1016/S0006-3495(00)76441-1
https://doi.org/10.1109/5.18626
https://github.com/JuliaPy/PythonCall.jl
https://github.com/JuliaPy/PythonCall.jl
https://github.com/cjdoris/LogarithmicNumbers.jl
https://github.com/cjdoris/LogarithmicNumbers.jl
https://doi.org/10.21105/joss.06436


Särkkä, S., & Svensson, L. (2023). Bayesian Filtering and Smoothing (2nd ed.). Cambridge
University Press. https://doi.org/10.1017/9781108917407

Schreiber, J. (2018). Pomegranate: Fast and Flexible Probabilistic Modeling in Python. Journal
of Machine Learning Research, 18(164), 1–6. http://jmlr.org/papers/v18/17-636.html

Schreiber, J. (2024). Jmschrei/pomegranate. https://github.com/jmschrei/pomegranate
(Original work published 2014)

White, L., Abbott, M., Zgubic, M., Revels, J., Arslan, A., Axen, S., Schaub, S., Robinson,
N., Ma, Y., Dhingra, G., willtebbutt, Heim, N., Widmann, D., Rosemberg, A. D. W.,
Schmitz, N., Rackauckas, C., Heintzmann, R., frankschae, Fischer, K., … Chorney, F.
(2022). JuliaDiff/ChainRules.jl: V1.23.0 (Version v1.23.0). Zenodo. https://doi.org/10.
5281/zenodo.5881966

Dalle. (2024). HiddenMarkovModels.jl: generic, fast and reliable state space modeling. Journal of Open Source Software, 9(96), 6436.
https://doi.org/10.21105/joss.06436.

5

https://doi.org/10.1017/9781108917407
http://jmlr.org/papers/v18/17-636.html
https://github.com/jmschrei/pomegranate
https://doi.org/10.5281/zenodo.5881966
https://doi.org/10.5281/zenodo.5881966
https://doi.org/10.21105/joss.06436

	Summary
	Statement of need
	Package design
	Benchmarks
	Conclusion
	Acknowledgements
	References

