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Summary
Hidden Markov Models (or HMMs) are a very popular statistical framework, with numerous
applications ranging from speech recognition to bioinformatics. They characterize a sequence
of observations 𝑌1,… , 𝑌𝑇 by assuming the existence of a hidden sequence of states 𝑋1,… ,𝑋𝑇.
The distribution of a state 𝑋𝑡 can only depend on the previous state 𝑋𝑡−1, and the distribution
of an observation 𝑌𝑡 can only depend on the current state 𝑋𝑡. In addition, both of these
dynamics may be influenced by exogenous control variables 𝑈1,… , 𝑈𝑇. This is a very versatile
and practical set of assumptions: see Rabiner (1989) for an introduction, Cappé et al. (2005)
for a book-length treatment and Bengio & Frasconi (1994) for a seminal discussion of HMMs
with controls.

Given a sequence of observations and a parametric family of HMMs ℙ𝜃, there are several
problems one can face. In generic graphical models, these problems are often intractable,
but HMMs have a tree-like structure that yields exact solution procedures with polynomial
complexity. The package HiddenMarkovModels.jl leverages the Julia language (Bezanson et
al., 2017) to implement those algorithms in a generic, fast and reliable way.

Inference problem Algorithm
Best state sequence argmax𝑋1∶𝑇

ℙ𝜃(𝑋1∶𝑇|𝑌1∶𝑇, 𝑈1∶𝑇) Viterbi
Observation sequence likelihood ℙ𝜃(𝑌1∶𝑇|𝑈1∶𝑇) Forward
State marginals ℙ𝜃(𝑋𝑡|𝑌1∶𝑇, 𝑈1∶𝑇) Forward-

backward
Maximum likelihood parameter argmax𝜃 ℙ𝜃(𝑌1∶𝑇|𝑈1∶𝑇) Baum-

Welch

Statement of need
The initial motivation for HiddenMarkovModels.jl was an application of HMMs to reliability
analysis for the French railway company SNCF (Dalle, 2022). In this industrial use case, the
observations were marked temporal point processes (sequences of timed events with structured
metadata) generated by condition monitoring systems, possibly influenced by the daily activity
of the train unit.

Unfortunately, nearly all implementations of HMMs we surveyed (in Julia and Python) expect
the observations to be generated by a predefined set of distributions, with no temporal
heterogeneity. In Julia, the previous reference package HMMBase.jl (Mouchet, 2023) requires
compliance with the Distributions.jl (Besançon et al., 2021) interface, which precludes
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anything not scalar- or array-valued, let alone point processes. In Python, the numpy-based
hmmlearn (hmmlearn developers, 2023) and the PyTorch-based pomegranate (Schreiber, 2018,
2014/2024) each offer a catalogue of discrete and continuous distributions, but do not allow
for easy extension by the user. The more recent JAX-based dynamax (Chang et al., 2022/2024;
Murphy, 2023; Särkkä & Svensson, 2023) is the only package adopting an extensible interface
with optional controls, similar to ours.

Focusing on Julia specifically, other downsides of HMMBase.jl include the lack of support
for multiple observation sequences, automatic differentiation, sparse transition matrices or
number types beyond 64-bit floating point. Two other Julia packages each provide a subset
of functionalities that HMMBase.jl lacks, namely HMMGradients.jl (Antonello, 2021) and
MarkovModels.jl (Ondel et al., 2022), but they are less developed and ill-suited to uninformed
users.

Package design
HiddenMarkovModels.jl was designed to overcome the limitations mentioned above, following
a few guiding principles.

Our package is generic. Observations can be arbitrary objects, and the associated distributions
only need to implement two methods: a loglikelihood logdensityof(dist, x) and a sampler
rand(rng, x). Number types are not restricted, and automatic differentiation of the sequence
loglikelihood (Qin et al., 2000) is supported both in forward and reverse mode, partly thanks
to ChainRulesCore.jl (White et al., 2022). The extendable AbstractHMM interface allows
incorporating features such as priors or structured transitions, as well as temporal or control
dependency, simply by redefining three methods:

initialization(hmm)

transition_matrix(hmm, control)

obs_distributions(hmm, control)

Our package is fast. Julia’s blend of multiple dispatch and just-in-time compilation delivers
satisfactory speed even when working with unexpected types that Python’s tensor backends
could not easily handle. Inference routines rely on BLAS calls for linear algebra, and exploit
multithreading to process sequences in parallel.

Our package is reliable. It is thoroughly tested and documented, with an extensive API reference
and accessible tutorials. Special care was given to code quality, type stability, and compatibility
checks with various downstream packages (like automatic differentiation packages).

However, our package is also limited in scope. It aims at CPU efficiency for moderately-sized
state spaces, and remains untested on GPU. Furthermore, it does not manipulate probabilities
in the logarithmic domain, but instead uses the scaling trick (Rabiner, 1989) with a variation
borrowed from HMMBase.jl. Thus, its numerical stability might be worse than that of Python
counterparts on challenging instances. Luckily, thanks to unrestricted number types, users are
free to bring in third-party packages like LogarithmicNumbers.jl (Rowley, 2023) to recover
additional precision.

Benchmarks
We compare HiddenMarkovModels.jl, HMMBase.jl, hmmlearn, pomegranate and dynamax on
a test case with univariate Gaussian observations. The reason for this low-dimensional choice
is to spend most of the time in the generic HMM routines themselves, as opposed to the
loglikelihood computations which are problem-specific. The data consists of 50 independent
sequences of length 100 each, with a number of states varying from 2 to 10, to which we
apply all inference algorithms (with Baum-Welch performing 5 iterations).
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All benchmarks were run in Julia version 1.10.2 with BenchmarkTools.jl (Chen & Revels, 2016),
calling Python with PythonCall.jl (Rowley, 2022), and plotting results with CairoMakie.jl

(Danisch & Krumbiegel, 2021). The comparison code imports HiddenMarkovModels.jl version
0.5.0 (commit f7cf63b), and it is accessible in the libs/HMMComparison/ subfolder of our
GitHub repository. We tried to minimize parallelism effects by running everything on a single
thread, and made the assumption that the Julia-to-Python overhead is negligible compared to
the algorithm runtime.

Figure 1: Benchmark of HMM packages

As we can see, HiddenMarkovModels.jl is the fastest option in Julia, and the second-fastest
overall behind dynamax (we think the large runtimes of dynamax in Baum-Welch might stem
from incorrect benchmarks). The key observation is that we achieved this speedup over
HMMBase.jl while simultaneously increasing generality in half a dozen different ways.

Conclusion
HiddenMarkovModels.jl fills a longstanding gap in the Julia package ecosystem, by providing
an efficient and flexible framework for state space modeling.
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