
ADIOS4DOLFINx: A framework for checkpointing in
FEniCS
Jørgen Schartum Dokken 1¶

1 Simula Research Laboratory, Oslo, Norway ¶ Corresponding author
DOI: 10.21105/joss.06451

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @gonsie
• @Chilipp

Submitted: 06 March 2024
Published: 30 April 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
We introduce ADIOS4DOLFINx, a checkpointing framework for the latest version of the FEniCS
project, known as DOLFINx. DOLFINx is a general framework for solving partial differential
equations using the finite element method. The input to simulations using the finite element
method is the computational domain (mesh), mesh markers, initial conditions, and boundary
conditions. To be able to restart a simulation at any point, one has to have the capability to
read in all of the aforementioned variables. The adios4dolfinx package implements all of these
operations, using the Message Passing Interface (MPI) for communication across multiple
processes and ADIOS2 for writing/reading data to/from file. In particular, the functionality of
adios4dolfinx includes N-to-M-checkpointing, which means that one can store a result of a
simulation that was generated with N number of processes, and read it into a program running
on M processes.

Statement of need
The ability to start, stop, and resume simulations is becoming increasingly important with the
growing use of supercomputers for solving scientific and engineering problems. A rising number
of large-scale problems are deployed on high-performance, distributed-memory computing
systems and users tend to run more demanding simulations. These are often non-linear and
time-dependent, which typically amounts to thousands of CPU hours. As it might uncover
bugs and unphysical solutions, the ability to run parts of the simulation, inspect the result,
and then resume simulation becomes a key factor to enable efficient development. If this is
discovered early on, the simulation can be terminated, saving the developer time, money and
energy usage.

ADIOS4DOLFINx enables users of the FEniCS project (Baratta et al., 2023) to store solutions
during simulation, and read them in at their convenience to resume simulations at a later
stage. Several checkpointing methods are implemented, including N-to-M checkpointing,
which means saving data from a program executed with N processes, and loading it back in on
M processes.

Functionality for N-to-M checkpointing was implemented for the old version of DOLFIN by
Habera et al. (2018). However, this functionality is not present in the newest version of
the FEniCS Project (Baratta et al., 2023). The storage principles in the ADIOS4DOLFINx
are based on the ideas present in this implementation. However, the implementation for
non-Lagrangian finite element spaces vastly differs, due to the usage of dof-permutations
(Scroggs et al., 2022). Additionally, all global MPI calls in the old implementation have been
reimplemented with scalable MPI communication using the MPI-3 Neighborhood Collectives
(MPI-Forum, 2012).

The framework introduces several new methods for storing partitioning information for N-to-N

Dokken. (2024). ADIOS4DOLFINx: A framework for checkpointing in FEniCS. Journal of Open Source Software, 9(96), 6451. https:
//doi.org/10.21105/joss.06451.

1

https://orcid.org/0000-0001-6489-8858
https://doi.org/10.21105/joss.06451
https://github.com/openjournals/joss-reviews/issues/6451
https://github.com/jorgensd/adios4dolfinx
https://doi.org/10.5281/zenodo.11094985
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/gonsie
https://github.com/Chilipp
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06451
https://doi.org/10.21105/joss.06451


checkpointing with arbitrary ghosting, as well as very lightweight snapshot checkpoints. A
similar framework for N-to-M checkpointing was implemented by Ham et al. (2024) for the
finite element framework Firedrake (Rathgeber et al., 2016). This frameworks differs from
the one used in ADIOS4DOLFINx in several ways due to the different internal structures of
DOLFINx and Firedrake.

Functionality
The software is written as a Python-extension to DOLFINx, which can be installed using the
Python Package installer pip directly from the GitHub repository or using the ADIOS4DOLFINx
from the Python Package Index (PyPI). The following features are supported:

• Snapshot checkpointing
• N-to-M checkpointing with mesh storage
• N-to-M checkpointing without mesh storage
• N-to-N checkpointing storing partitioning information

A snapshot checkpoint is a checkpoint that is only valid during the run of a simulation. It is
lightweight (only storing the local portion of the global dof array to file), and is stored using
the Local Array feature in ADIOS2 (Godoy et al., 2020) to store data local to the MPI process.
This feature is intended for use cases where many solutions have to be aggregated to the end
of a simulation to some post-processing step, or as a fall-back mechanism when restarting a
diverging iterative solver.

A N-to-M checkpoint is a checkpoint that can be written with N processes and read back in
with M processes. Two versions of this checkpoint are supported: one where storage of the
mesh is required and one without mesh storage. The reasoning for such a split is that when
a mesh is read into DOLFINx and passed to an appropriate partitioner, the ordering mesh
nodes (coordinates) and connectivity (cells) is changed. Writing these back into global arrays
requires MPI communication to ensure contiguous writing of data.

The N-to-M checkpoint with mesh storage exclusively writes contiguous chunks of data owned
by the current process to an ADIOS2 Global Array that can be read in with a different number
of processes at a later stage. This operation requires no MPI communication.

In many cases, the input mesh might stem from an external mesh generator and is stored
together with mesh entity markers in an external file, for instance an XDMF file. To avoid
duplication of this mesh data, a standalone file that can be associated with the XDMF file for
a later restart can be created. This method requires some MPI neighborhood collective calls
to move data from the process that currently owns it to the relevant process for that stores it
as a Global Array in contiguous chunks. Both N-to-M checkpoint routines use the same API
to read in checkpoints at a later instance.

In certain scenarios, mesh partitioning might be time consuming, as a developer is running the
same problem over and over again with the same number of processes. As DOLFINx supports
custom partitioning (Baratta et al., 2023), we use this feature to read in partition data from a
previous run. As opposed to the checkpoints in the old version of DOLFIN, these checkpoints
handle any ghosting, that being a custom ghosting provided by the user, or the shared-facet
mode provided by DOLFINx.

Examples
A large variety of examples covering all the functions in ADIOS4DOLFINx is available at
https://jorgensd.github.io/adios4dolfinx.

Dokken. (2024). ADIOS4DOLFINx: A framework for checkpointing in FEniCS. Journal of Open Source Software, 9(96), 6451. https:
//doi.org/10.21105/joss.06451.

2

https://pypi.org/project/adios4dolfinx/
https://jorgensd.github.io/adios4dolfinx
https://doi.org/10.21105/joss.06451
https://doi.org/10.21105/joss.06451


Acknowledgements
We acknowledge the valuable feedback on the documentation and manuscript by Thomas M.
Surowiec and Halvor Herlyng and packaging support by Min Ragan-Kelley. Additionally, we
acknowledge the scientific discussion regarding feature development and code contributions by
Francesco Ballarin, Henrik N. Finsberg, and Nathan Sime.

References
Baratta, I. A., Dean, J. P., Dokken, J. S., Habera, M., Hale, J., Richardson, C. N., Rognes,

M. E., Scroggs, M. W., Sime, N., & Wells, G. N. (2023). DOLFINx: The next generation
FEniCS problem solving environment. https://doi.org/10.5281/zenodo.10447666

Godoy, W. F., Podhorszki, N., Wang, R., Atkins, C., Eisenhauer, G., Gu, J., Davis, P., Choi, J.,
Germaschewski, K., Huck, K., Huebl, A., Kim, M., Kress, J., Kurc, T., Liu, Q., Logan, J.,
Mehta, K., Ostrouchov, G., Parashar, M., … Klasky, S. (2020). ADIOS 2: The adaptable
input output system. A framework for high-performance data management. SoftwareX, 12,
100561. https://doi.org/10.1016/j.softx.2020.100561

Habera, M., Zilian, A., Hale, J., Richardson, C. N., Blechta, J., & Dave, D. (2018). XDMF
and ParaView: checkpointing format. https://hdl.handle.net/10993/35848

Ham, D. A., Hapla, V., Knepley, M. G., Mitchell, L., & Sagiyama, K. (2024). Efficient n-to-m
checkpointing algorithm for finite element simulations. https://doi.org/10.48550/arXiv.
2401.05868

MPI-Forum. (2012). MPI: A Message-Passing Interface Standard. Version 3.0. https:
//www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A. T. T., Bercea,
G.-T., Markall, G. R., & Kelly, P. H. J. (2016). Firedrake: Automating the finite element
method by composing abstractions. ACM Transactions on Mathematical Software, 43(3).
https://doi.org/10.1145/2998441

Scroggs, M. W., Dokken, J. S., Richardson, C. N., & Wells, G. N. (2022). Construction of
arbitrary order finite element degree-of-freedom maps on polygonal and polyhedral cell
meshes. ACM Transactions on Mathematical Software, 48(2). https://doi.org/10.1145/
3524456

Dokken. (2024). ADIOS4DOLFINx: A framework for checkpointing in FEniCS. Journal of Open Source Software, 9(96), 6451. https:
//doi.org/10.21105/joss.06451.

3

https://doi.org/10.5281/zenodo.10447666
https://doi.org/10.1016/j.softx.2020.100561
https://hdl.handle.net/10993/35848
https://doi.org/10.48550/arXiv.2401.05868
https://doi.org/10.48550/arXiv.2401.05868
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://doi.org/10.1145/2998441
https://doi.org/10.1145/3524456
https://doi.org/10.1145/3524456
https://doi.org/10.21105/joss.06451
https://doi.org/10.21105/joss.06451

	Summary
	Statement of need
	Functionality
	Examples
	Acknowledgements
	References

