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Summary
Heterogeneous and context-dependent systems are common in real-world processes, such as
those in biology, medicine, finance, and the social sciences. However, learning accurate and
interpretable models of these heterogeneous systems remains an unsolved problem. Most
statistical modeling approaches make strict assumptions about data homogeneity, leading
to inaccurate models, while more flexible approaches are often too complex to interpret
directly. Fundamentally, existing modeling tools force users to choose between accuracy and
interpretability. Recent work on Contextualized Machine Learning (Lengerich et al., 2023)
has introduced a new paradigm for modeling heterogeneous and context-dependent systems,
which uses contextual metadata to generate sample-specific models, providing context-specific
model-based insights and representing data heterogeneity with context-dependent model
parameters.

Here, we present Contextualized, a SKLearn-style Python package for estimating and an-
alyzing personalized context-dependent models based on Contextualized Machine Learning.
Contextualized implements two reusable and extensible concepts: a context encoder which
translates sample context or metadata into model parameters, and sample-specific model which
is defined by the context-specific parameters. With the flexibility of context-dependent para-
meters, each context-specific model can be a simple model class, such as a linear or Gaussian
model, providing direct model-based interpretability without sacrificing overall accuracy.

Statement of Need
“Personalized modeling” is a statistical method that has started to gain popularity in recent
years for representing complex and heterogeneous systems exhibiting individual, sample-specific
effects, such as those prevalent in complex diseases, financial markets, and social systems. In
its basic form: 𝑥𝑖 ∼ 𝑃(𝑋𝑖; 𝜃𝑖), where 𝑖 indexes a sample, 𝜃𝑖 is the parameters defining the
sample-specific distribution, and 𝑥𝑖 corresponds to the observation drawn from this sample-
specific distribution, where understanding sample heterogeneity is equivalent to estimating
data distributions with sample-specific parameters. Some methods, such as sample-left-out
models (Kuijjer et al., 2019), provide sample-specific estimators without additional information
but lack desirable statistical properties such as the ability to generalize to new samples or
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test model performance on held-out data. Due to the difficulty of estimating sample-specific
parameters, most methods make use of side information, covariates or “context,” as an indicator
of sample-to-sample variation (Fan & Zhang, 1999; Hastie & Tibshirani, 1993; Kolar et al.,
2010; Parikh et al., 2011; Wang et al., 2022). However, prior methods only permit limited
use of contextual side information, allowing models to vary over a few continuous covariates
(Fan & Zhang, 1999; Hastie & Tibshirani, 1993; Wang et al., 2022), or a small number
of groups (Kolar et al., 2010; Parikh et al., 2011; Zeileis et al., 2008), and do not scale to
high-dimensional, complex, and sample-specific variation. partykit (Hothorn & Zeileis, 2015)
goes beyond this by enabling random forests of model-based recursive partitioning (Zeileis et al.,
2008) on contextual information, learning complex non-linear relationships between contextual
information and linear regression parameters. However, partykit is limited to linear models
and the relationship between linear coefficients and contextual information must be represented
using tree-based methods, which struggle with high-dimensional and non-tabular data types.
Recently, the contextual explanation network (CEN) was developed to learn this context-
model relationship using a deep neural network, benefiting from a wide range of architectures
targeting high-dimensional non-tabular data (Al-Shedivat et al., 2020). However, like model-
based partitioning, the CEN is designed only for linear model personalization. Contextualized
Machine Learning generalizes the CEN method, reframing the sample-specific parameter
estimation problem as a more flexible and generalizable latent variable inference problem which
provides a unified mathematical framework for inferring and estimating personalized models of
heterogeneous and context-dependent systems using a wide range of model types (Lengerich
et al., 2023).

Formally, Contextualized Machine Learning uses subject data 𝑋 = {𝑋𝑖}𝑁𝑖=1 and context data
𝐶 = {𝐶𝑖}𝑁𝑖=1 where 𝑖 indexes samples. We can express the likelihood of all data in the form of

𝑃(𝑋,𝐶) ∝ ∫
𝜃
𝑑𝜃𝑃𝑀(𝑋 ∣ 𝜃)𝑃 (𝜃 ∣ 𝐶)

where we call 𝑃(𝜃 ∣ 𝐶) the context encoder, and 𝑃𝑀(𝑋 ∣ 𝜃) the sample-specific model,
where 𝑀 denotes model class or type. So long as the choice for both the context encoder
and sample-specific model are differentiable, we can learn to estimate parameters 𝜃𝑖 for each
sample 𝑖 via end-to-end backpropagation with gradient-based algorithms such that 𝑃(𝑋 ∣ 𝐶)
is maximized. Conveniently, 𝐶 can contain any multivariate or real features that are relevant
to the study, such as clinical, genetic, textual, or image data, and the context encoder can be
any differentiable function, such as a neural network, that maps 𝐶𝑖 to 𝜃𝑖.

Contextualized implements this framework for key types of context encoders and sample-
specific models, opening up new avenues for quantitative analysis of complex and heterogeneous
data, and simplifying the process of transforming this data into results with plug-and-play
analysis tools. In particular, Contextualized:

1. Unifies Modeling Frameworks: Contextualized unifies modeling approaches for both
homogeneous and heterogeneous data, including population models, varying-coefficient
models (Fan & Zhang, 1999; Hastie & Tibshirani, 1993; Wang et al., 2022), and partition-
based models (Kolar et al., 2010; Parikh et al., 2011; Zeileis et al., 2008) via context
encoding, learning parameter variation over both continuous contexts and discrete groups.
Additionally, Contextualized naturally falls back to these classic modeling frameworks
when complex heterogeneity is not present. Not only is this convenient, but it limits the
number of modeling decisions and validation tests required by users, reducing the risk of
misspecification and false discoveries (Lengerich et al., 2023).

2. Models High-resolution Heterogeneity: Contextualized models adapt to the context
of each sample by using a context encoder, naturally accounting for high-dimensional,
continuous, and fine-grained variation between samples (Ellington et al., 2023).

3. Quantifies Heterogeneity in Data: Context-specific models quantify the randomness and
structure of the systems underlying each data point, and variation in context-specific
model parameters quantifies the heterogeneity between data points (Al-Shedivat et
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al., 2018; Deuschel et al., 2023). Contextualized provides tools to analyze, test, and
validate contextualized models, unlocking new studies of structured heterogeneity.

4. Interpolates and Extrapolates to Unseen Contexts: By using context encoders to
translate between contextual information and model parameters, Contextualized learns
meta-relationships between metadata and data. At test time, Contextualized can adapt
to contexts which were never observed in the training data (Ellington et al., 2023).

5. Analyzes Latent Processes: By associating structured models with each sample,
Contextualized enables analysis of samples with latent processes. These latent
processes can be inferred from patterns in context-specific models, and can be used
to identify latent subgroups, latent trajectories, and latent features that explain
heterogeneity (Lengerich, Al-Shedivat, et al., 2022).

6. Provides Direct Interpretability: Contextualized estimates and analyzes context-specific
statistical models. These statistical models are mathematically-constrained such that
each parameter has specific meaning, permitting direct interpretation and immediate
results (Lengerich, Nunnally, et al., 2022).

7. Incorporates Multi-modal Data: Context is a general and flexible concept, and context-
encoders can be used to instill any type of contextual information into contextualized
models, including images, text, tabular data, and more (Al-Shedivat et al., 2020;
Lengerich et al., 2021; Lengerich, Al-Shedivat, et al., 2022; Stoica et al., 2020).

8. Enables Modular Development: The context encoder and sample-specific model within
Contextualized are both highly adaptable; the context encoder can be replaced with
any differentiable function, and any statistical model with a differentiable likelihood or
log-likelihood can be contextualized and made sample-specific, benefiting from a rich
ecosystem of statistical models and deep learning methods.

Usage
The Contextualized software is structured through three primary resources:

1. A simple plug-and-play interface to learn contextualized versions of popular model classes
(e.g. classifiers, linear regression, graphical models, Gaussians).

2. A suite of context encoders to incorporate any modality of contextual data (e.g. con-
tinuous, categorical, images, text) and/or impose restrictions on context-dependent
relationships (e.g. feature independence, interaction effects).

3. Intuitive analysis tools to understand, quantify, test, and visualize data with heteroge-
neous and context-dependent behavior. These tools focus on visualizing heterogeneity,
automatic hypothesis testing, and feature selection for context-dependent and context-
invariant features.

Installation instructions, tutorials, API reference, and open-source code are all available at
contextualized.ml.
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