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Summary

Data assimilation (DA) is an essential procedure in Earth and environmental sciences, enabling
physical model states to be constrained using observational data. (Albergel et al., 2018;
Carrassi et al., 2018; Evensen, 2009; Reichle, 2008)

In the DA process, observations are integrated into the physical model through the application
of a Measurement Operator (MO) — a connection model mapping physical model states to
observations. Researchers have observed that employing a Machine-Learning (ML) model as a
surrogate MO can bypass the limitations associated with using an overly simplified MO. (B. A.
Forman & Xue, 2017; B. Forman & Reichle, 2014; Xue & Forman, 2015)

Statement of Need

A surrogate MO, trained as a ML model, is generally considered valid within a specific spatio-
temporal range. (Reichle, 2008; Shan et al., 2022; Zhou et al., 2008) When dealing with a
large spatio-temporal scale, multiple mapping processes may exist, prompting consideration for
training separate MOs for distinct spatial and/or temporal partitions of the dataset. As the
number of partitions increases, a challenge arises in distributing these training tasks effectively
among the partitions.

To address this challenge, we developed a novel approach for distributed training of MOs. We
present the open Python library MOTratiner, which to the best of our knowledge, is the first
Python library catering to researchers requiring training independent MQOs across extensive
spatio-temporal coverage in a distributed manner. MOTrainer leverages Xarray's (Hoyer &
Joseph, 2017) support for multi-dimensional datasets to accommodate spatio-temporal features
of input/output data of the training tasks. It provides user-friendly functionalities implemented
with the Dask (Rocklin, 2015) library, facilitating the partitioning of large spatio-temporal
data for independent model training tasks. Additionally, it streamlines the train-test data split
based on customized spatio-temporal coordinates. The Jackknife method (Efron, 1982) is
implemented as an external Cross-Validation method for Deep Neural Network (DNN) training,
with support for Dask parallelization. This feature enables the scaling of training tasks across
various computational infrastructures.

MOTrainer has been employed in a study of vegetation water dynamics (Shan et al., 2022),
where it facilitated the mapping of Land-Scape Model states to satellite radar observations.

Tutorial
The MOTratiner package includes comprehensive usage examples, as well as tutorials for:

1. Converting input data to Xarray Dataset format: Example 1 and Example 2;
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2. Training tasks on simpler ML models using sklearn and daskml: Example Notebook;

3. Training tasks on Deep Neural Networks (DNN) using TensorFlow: Example Notebook.
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