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Summary
OptiCommPy is an open-source Python package designed for simulating fiber optical com-
munication systems and subsystems. OptiCommPy is freely accessible, providing researchers,
students, and engineers with the option to simulate various fiber optical communication systems
at the physical layer. Additionally, the toolbox incorporates numerous digital signal processing
(DSP) algorithms, particularly essential for coherent optical systems.

Statement of need
Optical fiber communication dominates the transmission of high-speed data traffic, owing to
various physical, engineering, and economic factors. Worldwide efforts are continuously being
made to research and develop optical communication technologies that can support both current
and future Internet infrastructure. The expansion of optical networks necessitates a swift
transition from scientific breakthroughs in research labs to telecommunications industry products
and solutions. Furthermore, the ever-increasing demand for bandwidth and connectivity places
constant pressure on the development of faster and more efficient optical fiber communications
(Winzer & Neilson, 2017).

Today, optical communication systems engineering is a multidisciplinary field encompassing
various areas of science and technology, including laser science, photonic devices, fiber optics
modeling and engineering, digital signal processing, and communications theory. As we approach
the limits of information transmission through optical fibers, more sophisticated engineering is
required for the construction of optical transmitters and receivers, involving advanced DSP
(Essiambre et al., 2010; Savory, 2010). The emergence of high-speed application-specific
integrated circuits (ASICs) and advanced DSP algorithms has propelled coherent optical
transmission systems to the forefront of high-capacity transmission via optical fibers (Sun et
al., 2020).

Whether in the research or development stages, the study of optical communication systems
typically necessitates the use of robust computational models to simulate various aspects of
the system. For instance, it may be essential to comprehend how information-carrying signals
transmitted over fibers will be affected by propagation phenomena such as chromatic dispersion
(CD), polarization mode dispersion (PMD), nonlinear effects, and noise (Agrawal, 2002). This
information ultimately determines the performance metrics of the transmission system, which
play a crucial role in selecting the most suitable technology to become an industrial standard.

Presently, a variety of optical communication simulation toolboxes are accessible. While
the majority of these are proprietary software packages (Optiwave, 2023; Synopsys, 2023;
VPIphotonics, 2023), a few are open-source but are designed to operate within proprietary
software environments such as Matlab® (dtu-dsp, 2015; Paolo Serena, 2021). In this scenario,
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OptiCommPy is intended to be an open-source alternative simulation tool for educational and
research purposes.

OptiCommPy code structure
The module structure of the OptiCommPy package is illustrated in Fig. 1. At the top level,
the package is named optic, containing five sub-packages: comm, models, dsp, utils, and
plot.

Figure 1: Structure of modules of the OptiCommPy package.

The comm sub-package comprises three modules designed for implementing various digital
modulation and demodulation schemes (Proakis, 2001), including pulse amplitude modulation
(PAM), quadrature amplitude modulation (QAM), phase-shift keying (PSK), and on-off keying
(OOK). Evaluating the performance of these diverse digital communication schemes is made
possible through different metrics, such as bit-error-rate (BER), symbol-error-rate (SER), error
vector magnitude (EVM), mutual information (MI), and generalized mutual information (GMI)
(Alvarado et al., 2018), all available within the comm.metrics module.

The models sub-package contains most of the mathematical/physical models used to build
OptiCommPy simulations. Within the models.devices module, one can access models for a
range of optical devices, encompassing optical Mach-Zehnder modulators, photodiodes, optical
hybrids, optical coherent receivers, and more. These functions are fundamental building blocks
for constructing simulations of optical transmitters and receivers. In the models.channels

module, a collection of mathematical models for the fiber optic channel is provided, spanning
from basic additive white Gaussian noise (AWGN) and linear propagation models to more
sophisticated non-linear propagation models rooted in variants of the split-step Fourier method
(SSFM)(Agrawal, 2002). In particular, it includes an implementation of the Manakov model
to simulate nonlinear transmission over a fiber optic channel with polarization-multiplexing
(Marcuse et al., 1997). Certain computationally intensive models, such as the Manakov SSFM,
have a CuPy-based version (Okuta et al., 2017) accessible via models.modelsGPU, designed
specifically for execution with CUDA GPU acceleration (NVIDIA et al., 2020).

The dsp sub-package is a collection of DSP algorithms ranging from basic signal processing
operations, such as linear finite impulse response filtering, to more advanced algorithms,
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e.g. blind adaptive equalization. Currently, the dsp sub-package contains three special-
ized modules: dsp.clockRecovery provides algorithms for clock and timing synchronization;
dsp.equalization contains implementations of common digital equalization algorithms used
in optical communications; dsp.carrierRecovery provides algorithms for carrier frequency
and phase recovery. These sub-packages cover all the basic DSP functionalities required in
most of the modern coherent optical transceivers.

Finally, the utils and the plot sub-packages provide functions that implement a few general
utilities and custom plotting functions to visualize signals (eyediagram plots, constellation
plots, etc).

Several types of analysis can be conducted to characterize transmission performance across
various system parameters. For instance, one can generate performance curves that depict
BER and Q-factor as functions of received optical power at varying transmission distances, as
illustrated in Fig. 2.

Figure 2: Performance metrics for different transmission distances and received optical powers, character-
izing the increasing penalty from chromatic dispersion with the distance in a 10 Gb/s OOK transmission
system. (a) BER vs received optical power for different transmission distances; (b) Q-factor vs received
optical power for different transmission distances.

Examples of usage
In the documentation, one can find a getting started example that demonstrates some of the
core features of OptiCommPy and reproduces the curves displayed in Fig. 2. A collection of
examples to build several different simulation setups, including advanced setups with non-linear
fiber propagation models, WDM transmission, and coherent detection can be found in the
repository’s examples folder. Benchmarks quantifying the speedup achieved by using GPU
acceleration are also provided.
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