
NLSE: A Python package to solve the nonlinear
Schrödinger equation
Tangui Aladjidi 1¶, Clara Piekarski 1, and Quentin Glorieux 1

1 Laboratoire Kastler Brossel, Sorbonne University, CNRS, ENS-PSL University, Collège de France; 4
Place Jussieu, 75005 Paris, France ¶ Corresponding author

DOI: 10.21105/joss.06607

Software
• Review
• Repository
• Archive

Editor: Rocco Meli
Reviewers:

• @Abinashbunty
• @obliviateandsurrender

Submitted: 19 March 2024
Published: 23 July 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The nonlinear Schrödinger equation (NLSE) is a general nonlinear equation used to model
the propagation of light in nonlinear media. This equation is mathematically isomorphic to
the Gross-Pitaevskii equation (GPE) (Pitaevskij & Stringari, 2016) describing the evolution
of cold atomic ensembles. Recently, the growing field of quantum fluids of light (Carusotto
& Ciuti, 2013) has proven a fruitful testbed for several fundamental quantum and classical
phenomena such as superfluidity (Michel et al., 2018) or turbulence (Baker-Rasooli et al.,
2023). Providing a flexible, modern and performant framework to solve these equations is
crucial to model realistic experimental scenarios.

Statement of need
NumPy (Harris et al., 2020) is the default package for array operations in Python, which is the
language of choice for most physicists. However, the performance of NumPy for large arrays
and Fourier transforms quickly bottlenecks homemade implementations of popular solvers like
the split-step spectral scheme.

Over the years, there have been several packages striving to provide performant split-step
solvers for NLSE type equations. Here are a few examples:

• FourierGPE.jl for 1D to 3D Gross-Pitavskii equations in the context of cold atoms in
Julia.

• GPUE (Schloss & O’Riordan, 2018) for 1D to 3D Gross-Pitaevskii equations accelerated
on GPU, in C++ (currently unmaintained).

• py-fmas for 1D NLSE in optical fibers, with a split-step method (currently unmaintained).

With our project, we bring similar performance to C++ and Julia implementations, while striving
for accessibility and maintainability by using Python. Using easy to extend object-oriented
classes, users can readily input experimental parameters to quickly model real setups.

Functionality
NLSE harnesses the power of pseudo-spectral schemes to solve efficiently the following general
type of equation:

𝑖𝜕𝑡𝜓 = − 1
2𝑚

∇2𝜓 + 𝑉 𝜓 + 𝑔|𝜓|2𝜓.

To take advantage of the computing power of modern Graphics Processing Units (GPUs) for
Fast Fourier Transforms (FFTs), the main workhorse of this code is the CuPy (Okuta et al.,

Aladjidi et al. (2024). NLSE: A Python package to solve the nonlinear Schrödinger equation. Journal of Open Source Software, 9(99), 6607.
https://doi.org/10.21105/joss.06607.

1

https://orcid.org/0000-0002-3109-9723
https://orcid.org/0000-0001-6871-6003
https://orcid.org/0000-0003-0903-0233
https://doi.org/10.21105/joss.06607
https://github.com/openjournals/joss-reviews/issues/6607
https://github.com/Quantum-Optics-LKB/NLSE
https://doi.org/10.5281/zenodo.12795395
https://rmeli.github.io
https://orcid.org/0000-0002-2845-3410
https://github.com/Abinashbunty
https://github.com/obliviateandsurrender
https://creativecommons.org/licenses/by/4.0/
https://numpy.org/doc/stable/
https://github.com/AshtonSBradley/FourierGPE.jl/tree/master
https://github.com/GPUE-group/GPUE
https://github.com/omelchert/py-fmas
https://cupy.dev/
https://doi.org/10.21105/joss.06607

2017) package that maps NumPy functionalities onto the GPU using NVIDIA’s CUDA API. It also
heavily uses just-in-time compilation using Numba (Lam et al., 2015) to optimize performance
while having an easily maintainable Python codebase. Compared to naive NumPy-based CPU
implementations, this package provides a 100 to 10000 times speedup for typical sizes Figure 1.
While optimized for the use with GPU, NLSE also provides a performant CPU fallback layer.

The goal of this package is to provide a natural framework to model the propagation of light
in nonlinear media or the temporal evolution of Bose gases. It can also be used to model the
propagation of light in general. It supports lossy, nonlinear and nonlocal media.

It provides several classes to model 1D, 2D or 3D propagation, and leverages the array
functionalities of NumPy like broadcasting to allow scans of physical parameters to most
faithfully replicate experimental setups. The typical output of a simulation run is presented in
Figure 2.

This code was initially developed in Aladjidi (2023) and used as the main simulation tool for
several publications like Glorieux et al. (2023) and Baker-Rasooli et al. (2023).

Figure 1: Left: CPU vs GPU vs NumPy benchmark for 1 cm of propagation (200 evolution steps). Right:
Comparison versus the JuliaGPE.jl package on the study of vortex precession.

Figure 2: Example of an output of the solver. A shearing layer is observed nucleating vortices, that
are attracted towards the center due to an attractive potential. The density and phase of the field are
represented as well as the momentum distribution get a quick overview of the state of the field.

Reproducibility
The code used to generate the figures can be found in the examples folder of the repository
with the fig2_turbulence.py and fig1_benchmarks.py scripts. Note that you will need Julia
installed to run the JuliaGPE.jl script.

Aladjidi et al. (2024). NLSE: A Python package to solve the nonlinear Schrödinger equation. Journal of Open Source Software, 9(99), 6607.
https://doi.org/10.21105/joss.06607.

2

https://numpy.org/
https://developer.nvidia.com/cuda-downloads
https://numba.pydata.org/
https://github.com/Quantum-Optics-LKB/NLSE/tree/main/examples
https://github.com/Quantum-Optics-LKB/NLSE/blob/main/examples/fig1_turbulence.py
https://github.com/Quantum-Optics-LKB/NLSE/blob/main/examples/fig2_benchmarks.py
https://doi.org/10.21105/joss.06607

Acknowledgements
We acknowledge contributions from Myrann Baker-Rasooli as our most faithful beta tester.

Authors contribution
TA wrote the original code and is the main maintainer, CP extended the functionalities to
include coupled systems. QG supervised the project.

References
Aladjidi, T. (2023). Full optical control of quantum fluids of light in hot atomic vapors (Theses

No. 2023SORUS406, Sorbonne Université). https://doi.org/10.5281/zenodo.12698001

Baker-Rasooli, M., Liu, W., Aladjidi, T., Bramati, A., & Glorieux, Q. (2023). Turbulent
dynamics in a two-dimensional paraxial fluid of light. Physical Review A, 108(6), 063512.
https://doi.org/10.1103/PhysRevA.108.063512

Carusotto, I., & Ciuti, C. (2013). Quantum fluids of light. Rev. Mod. Phys., 85(1), 299–366.
https://doi.org/10.1103/RevModPhys.85.299

Glorieux, Q., Aladjidi, T., Lett, P. D., & Kaiser, R. (2023). Hot atomic vapors for nonlinear
and quantum optics. New Journal of Physics, 25(5), 051201. https://doi.org/10.1088/
1367-2630/acce5a

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-based python JIT compiler.
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, 1–6.
https://doi.org/10.1145/2833157.2833162

Michel, C., Boughdad, O., Albert, M., Larré, P.-É., & Bellec, M. (2018). Superfluid motion
and drag-force cancellation in a fluid of light. Nat. Comm., 9(1), 2108. https://doi.org/
10.1038/s41467-018-04534-9

Okuta, R., Unno, Y., Nishino, D., Hido, S., & Loomis, C. (2017). CuPy: A NumPy-
compatible library for NVIDIA GPU calculations. Proceedings of Workshop on Machine
Learning Systems (LearningSys) in the Thirty-First Annual Conference on Neural Information
Processing Systems (NIPS). http://learningsys.org/nips17/assets/papers/paper_16.pdf

Pitaevskij, L. P., & Stringari, S. (2016). Bose-Einstein condensation and superfluidity. Oxford
University Press. https://doi.org/10.1017/cbo9780511524240.005

Schloss, J. R., & O’Riordan, L. J. (2018). GPUE: Graphics Processing Unit Gross-Pitaevskii
Equation solver. Journal of Open Source Software, 3(32), 1037. https://doi.org/10.21105/
joss.01037

Aladjidi et al. (2024). NLSE: A Python package to solve the nonlinear Schrödinger equation. Journal of Open Source Software, 9(99), 6607.
https://doi.org/10.21105/joss.06607.

3

https://doi.org/10.5281/zenodo.12698001
https://doi.org/10.1103/PhysRevA.108.063512
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1088/1367-2630/acce5a
https://doi.org/10.1088/1367-2630/acce5a
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1038/s41467-018-04534-9
https://doi.org/10.1038/s41467-018-04534-9
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://doi.org/10.1017/cbo9780511524240.005
https://doi.org/10.21105/joss.01037
https://doi.org/10.21105/joss.01037
https://doi.org/10.21105/joss.06607

	Summary
	Statement of need
	Functionality
	Reproducibility
	Acknowledgements
	Authors contribution
	References

