DOI: 10.21105/joss.06644

Software
= Review &7
= Repository @
= Archive &0

Editor: Johanna Bayer 7
Reviewers:

= Qthelfer

= @svenweihe

= Qimperialiluc

Submitted: 20 December 2023
Published: 02 September 2025

License

Authors of papers retain copyright
and release the work under a

Creative Commons Attribution 4.0
International License (CC BY 4.0).

The Journal of Open Source Software

PyPEEC: A 3D Quasi-Magnetostatic Solver using an
FFT-Accelerated PEEC Method with Voxelization

Thomas Guillod ® Y and Charles R. Sullivan ®!

1 Dartmouth College, NH, USA q Corresponding author

Summary

The partial element equivalent circuit method (PEEC) is a particularly interesting integral-
equation method for electromagnetic problems as it can be easily combined with circuit
simulations and does not require a discretization of the free space. This paper introduces
PyPEEC, an open-source Python solver targeting 3D quasi-magnetostatic problems such as
inductors, transformers, chokes, IPT coils, or busbars. The geometry is described with voxels
and the solver uses an FFT-accelerated variant of the PEEC method. The FFT acceleration
drastically reduces the computational cost and the memory footprint.

Statement of Need

Quasi-magnetostatic field simulations are widely used for the design and optimization of
electrical components (e.g., power electronics, packaging, IC design). Among the existing
numerical methods (e.g., FEM, FDTD, PEEC, BEM), the PEEC method features several
advantages (Jithesh & Pande, 2003; A. Ruehli et al., 2017; A. E. Ruehli, 1974; Torchio, 2019):

= Only the active materials are discretized (no need to mesh the vacuum/air).
= Intuitive understanding of the equation discretization process.
= Straightforward connection of external circuit elements.

The fundamental drawback of the classical PEEC method is that the matrix describing the
equation system is not sparse. This means that the computational cost and the memory
requirement become problematic for large problems.

This problem can be mitigated if the geometry is represented with voxels (Torchio, Lucchini, et
al., 2022; A. C. Yucel et al., 2018). The first advantage of such geometries is that the Green's
functions (i.e., the inductance and potential matrices) have analytical solutions, avoiding
computationally intensive numerical integrals (Hoer & Love, 1965; Piatek & Baron, 2012).
The second advantage is that, due to the regular voxel discretization, many coefficients of
the inductance and potential matrices are redundant. The dense matrices are block-Toeplitz
Toeplitz-block matrices and feature the following key properties (Lee, 1986; Polimeridis et al.,
2014):

= The block-Toeplitz Toeplitz-block matrices can be embedded into circulant tensors,
reducing the memory requirements from O(n?) to O(n).

= The matrix-vector multiplications can be done with Fourier transforms. With an FFT
algorithm, the computational complexity of matrix-vector multiplications is reduced from

O(n?) to O(nlog(n)).

Guillod, & Sullivan. (2025). PyPEEC: A 3D Quasi-Magnetostatic Solver using an FFT-Accelerated PEEC Method with Voxelization. Journal of 1
Open Source Software, 10(113), 6644. https://doi.org/10.21105/joss.06644.


https://orcid.org/0000-0003-0738-5823
https://orcid.org/0000-0001-7492-9005
https://doi.org/10.21105/joss.06644
https://github.com/openjournals/joss-reviews/issues/6644
https://github.com/otvam/pypeec
https://doi.org/10.5281/zenodo.16764265
https://orcid.org/0000-0003-4891-6256
https://github.com/thelfer
https://github.com/svenweihe
https://github.com/imperialiluc
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06644

The Journal of Open Source Software

Different variants of the FFT-accelerated PEEC method have been shown to be extremely fast
for a large variety of electromagnetic problems, such as high-frequency transformers (Torchio,
Lucchini, et al., 2022), power inductors (Marconato & Lucchini, 2021), human body field
exposure (Torchio, Arduino, et al., 2022), nuclear fusion devices (Bettini et al., 2020), and
PCB layouts (Romano et al., 2023).

An open-source implementation (“FFT-PEEC") of the FFT-accelerated PEEC method already
exists (Torchio & Lucchini, 2020, 2021). However, this code can only handle magnetic
materials for static simulations (and not in the frequency domain). Moreover, depending on the
considered quasi-static problem (e.g., geometries with multiple conductors), the source code
requires some adaptations. The open-source tools “VoxHenry” and "MARIE" are also using
FFT-accelerated methods, but are specialized for full-wave solutions without magnetic materials
(Villena et al., 2015; A. Yucel, 2018). Finally, it should be noted that all the aforementioned
implementations depend on proprietary programming languages and libraries.

PyPEEC, the tool introduced in this paper, addresses these needs by providing a 3D quasi-
magnetostatic implementation of the FFT-accelerated PEEC method (Torchio, Lucchini, et
al., 2022). PyPEEC is a fully open-source (MPL 2.0 licence and implemented in Python) and
offers a general-purpose solver by allowing the description of arbitrary problems without having
to modify the source code.

Capabilities and Workflow

In this paper, the release 5.7 of PyPEEC is considered. PyPEEC solves 3D magnetostatic
and quasi-magnetostatic problems with voxel geometries. An arbitrary number of conductive
domains, magnetic domains (ideal and/or lossy), and sources (voltage and/or current) can
be used. The current density, flux density, electric potential, magnetic potential, and loss
density are computed. The free space magnetic field (near-field) can also be computed on a
point cloud. Additionally, the voltage, current, complex power, and impedance of the different
terminals are extracted.

Description of the geometry Description of the quasi-static problem
Description of the voxel structure Description of the solver num. tolerance

v v v v v v v v v v

mesher - Create the geometry solver - Solve the PEEC problem

Voxelization of the geometry Compute the incidence matrices
Using 3D STL files
Using 2D vector shapes (layer stack)
Using PNG files (layer stack)
Using GERBER files (layer stack)
Using voxel index vectors

Compute the Green functions analytically
Assemble the circulant tensors
Assemble the FFT matrix operators
Assemble the sparse preconditioner

Resolve conflicts between domains
Refine and/or resample the voxels
Compute the connected components

Create a dense operator for the eq. sys.
Check the condition of the eq. sys..
Solve the eq. sys. with an iterative solver

Check the domain connections Post-process the solution (field, power, etc.)

v v v v v v v v v v

viewer - Visualize the voxelized geometry plotter - Visualize the problem solution

N &

Figure 1: PyPEEC workflow consisting of the mesher, solver, viewer, and plotter

Guillod, & Sullivan. (2025). PyPEEC: A 3D Quasi-Magnetostatic Solver using an FFT-Accelerated PEEC Method with Voxelization. Journal of 2
Open Source Software, 10(113), 6644. https://doi.org/10.21105/joss.06644.


https://doi.org/10.21105/joss.06644

The Journal of Open Source Software

PyPEEC is implemented in pure Python using NumPy, SciPy, Joblib, Rasterio, Shapely,
Pillow, Matplotlib, and PyVista. The solver is able to leverage multi-core CPUs and GPUs.
Optional HPC libraries are available for accelerating the sparse preconditioner factorization
(MKL/PARDISO and PyAMG) and the FFT operations (FFTW, MKL/FFT, and CuPy/CUDA).
PyPEEC can be used through an API, a command-line tool, or Jupyter notebooks. The package
is available through the Python package index (PyPi) and the community-driven Conda package
index (conda-forge). A Docker image with JupyterLab is also maintained.

Figure 1 depicts the PyPEEC workflow. First, the mesher builds the geometry (from vector
shapes, STL files, PNG files, or GERBER files), performs the voxelization, and checks the
validity of the discretization. Afterward, the solver creates the FFT-multiplication operators,
assembles the equation systems, extracts sparse preconditioners, solves the problem, and
post-processes the solution. The viewer and the plotter are used to visualize the results.
Alternatively, ParaView can be used to analyze and visualize the solutions.

Solver Performance

To demonstrate the performance of the solver, a planar air-core spiral inductor is considered
(Guillod & Sullivan, 2025). The inductor has a footprint of 4 mm? and is operated in the
40.68 MHz ISM band. Figure 2 shows the ratio between the AC and DC current densities, the
relative error on the extracted impedance, and the computational cost. The number of degrees
of freedom represents the number of unknowns for the PEEC problem (dense equation system).
The computational cost is evaluated with an AMD EPYC 7543 CPU (without GPUs).

Current Density Convergence Comp. Cost

10+0 10+3

3 107! 0

s L 10+2

T 5

§ 1072 =

= g 10+ 4

¢ 1073 a

s g 0

© +0

0 10744 —e— R = 10

© —— |
107° T T T T 1071 T T T T

103 10* 10° 10° 107 108 103 10* 10° 10° 107 108
Jac/Joc (p-u.) Degrees of Freedom Degrees of Freedom
(a) (b) (c)

Figure 2: (a) Ratio between the AC and DC current densities. (b) Relative error on the extracted
equivalent resistance and the inductance. (c) Wall clock time duration for the complete workflow.

As the skin depth is smaller than the dimension of the conductor, the eddy currents are
non-negligible. This implies that, with a coarse discretization, the resistance value is less
accurate than the inductance value. With a tolerance of 4%, the quasi-static problem is solved
in 4 seconds. The FFT acceleration allows dense PEEC problems with 107 degrees of freedom
to be solved in 80 seconds.

The performances of PyPEEC are impacted by the following factors. For problems dominated
by eddy currents and/or containing magnetic materials, the majority of the computational
effort (typically over 70%) is linked to the FFT-accelerated multiplications. In such cases, the
performances are directly driven by the FFT solver and benefit from the available parallel and
GPU algorithms. Finally, it should be noted that PyPEEC is using a regular voxel structure
to represent the geometry. This implies that large geometries with small features cannot be
meshed efficiently.

Guillod, & Sullivan. (2025). PyPEEC: A 3D Quasi-Magnetostatic Solver using an FFT-Accelerated PEEC Method with Voxelization. Journal of 3
Open Source Software, 10(113), 6644. https://doi.org/10.21105/joss.06644.


https://doi.org/10.21105/joss.06644

The Journal of Open Source Software

Acknowledgments

This work was supported by the Power Management Integration Center (NSF IUCRC) at
Dartmouth College under Grant No. PMIC-062. The authors would like to thank Yue (Will)
Wu for discovering and reporting several bugs.

References

Bettini, P., Torchio, R., Lucchini, F., Voltolina, D., & Alotto, P. (2020). Fast Fourier
Transform-Volume Integral: a Smart Approach for the Electromagnetic Design of Complex
Systems in Large Fusion Devices. Plasma Physics and Controlled Fusion, 63(2), 025010.
https://doi.org/10.1088/1361-6587 /abce8f

Guillod, T., & Sullivan, C. R. (2025). Free-Shape Optimization of VHF Air-Core Inductors
using a Constraint-Aware Genetic Algorithm. Proc. Of the Applied Power Electronics Conf.
And Expo. (APEC), 1-8. https://doi.org/10.1109/APEC48143.2025.10977326

Hoer, C., & Love, Y. (1965). Exact Inductance Equations for Rectangular Conductors with
Applications to more Complicated Geometries. Journal of Research of the National Bureau
of Standards, 69(2), 127-137. https://doi.org/10.6028/jres.069¢.016

Jithesh, V., & Pande, D. C. (2003). A Review on Computational EMI Modelling Techniques.
Proc. Of the Int. Conf. On Electromagnetic Interference and Compatibility (INCEMIC),
159-166. https://doi.org/10.1109/ICEMIC.2003.1287800

Lee, D. (1986). Fast Multiplication of a Recursive Block Toeplitz Matrix by a Vector and its Ap-
plication. Journal of Complexity, 2(4), 295-305. https://doi.org/10.1016/0885-064X(86)
90007-5

Marconato, N., & Lucchini, F. (2021). Application of FFT-PEEC Method for Nonlinear
Inductance Extraction. Proc. Of the Int. Conf. On Electrical, Computer, Communications
and Mechatronics Engineering (ICECCME), 1-6. https://doi.org/10.1109/ICECCME52200.
2021.9590864

Piatek, Z., & Baron, B. (2012). Exact Closed Form Formula for Self Inductance of Conductor
of Rectangular Cross Section. Progress In Electromagnetics Research, 26, 225-236. https:
//doi.org/10.2528 /PIERM12080314

Polimeridis, A. G., Villena, J. F., Daniel, L., & White, J. K. (2014). Stable FFT-JVIE Solvers
for Fast Analysis of Highly Inhomogeneous Dielectric Objects. Journal of Computational
Physics, 269, 280-296. https://doi.org/10.1016/].jcp.2014.03.026

Romano, D., Kovacevic-Badstuebner, I., Antonini, G., & Grossner, U. (2023). Efficient PEEC
Iterative Solver for Power Electronic Applications. |IEEE Transactions on Electromagnetic
Compatibility, 65(2), 546-554. https://doi.org/10.1109/TEMC.2023.3238394

Ruehli, A. E. (1974). Equivalent Circuit Models for Three-Dimensional Multiconductor
Systems. [EEE Transactions on Microwave Theory and Techniques, 22(3), 216-221.
https://doi.org/10.1109/TMTT.1974.1128204

Ruehli, A., Antonini, G., & Jiang, L. (2017). Circuit Oriented Electromagnetic Modeling Using
the PEEC Techniques. Wiley. https://doi.org/10.1002/9781119078388

Torchio, R. (2019). A Volume PEEC Formulation Based on the Cell Method for Electromagnetic
Problems From Low to High Frequency. |IEEE Transactions on Antennas and Propagation,
67(12), 7452-7465. https://doi.org/10.1109/TAP.2019.2927789

Guillod, & Sullivan. (2025). PyPEEC: A 3D Quasi-Magnetostatic Solver using an FFT-Accelerated PEEC Method with Voxelization. Journal of 4
Open Source Software, 10(113), 6644. https://doi.org/10.21105/joss.06644.


https://doi.org/10.1088/1361-6587/abce8f
https://doi.org/10.1109/APEC48143.2025.10977326
https://doi.org/10.6028/jres.069c.016
https://doi.org/10.1109/ICEMIC.2003.1287800
https://doi.org/10.1016/0885-064X(86)90007-5
https://doi.org/10.1016/0885-064X(86)90007-5
https://doi.org/10.1109/ICECCME52200.2021.9590864
https://doi.org/10.1109/ICECCME52200.2021.9590864
https://doi.org/10.2528/PIERM12080314
https://doi.org/10.2528/PIERM12080314
https://doi.org/10.1016/j.jcp.2014.03.026
https://doi.org/10.1109/TEMC.2023.3238394
https://doi.org/10.1109/TMTT.1974.1128204
https://doi.org/10.1002/9781119078388
https://doi.org/10.1109/TAP.2019.2927789
https://doi.org/10.21105/joss.06644

SS

The Journal of Open Source Software

Torchio, R., Arduino, A., Zilberti, L., & Bottausci, O. (2022). A Fast Tool for the Parametric
Analysis of Human Body Exposed to LF Electromagnetic Fields in Biomedical Applications.
Computer Methods and Programs in Biomedicine, 214, 106543. https://doi.org/10.1016/j.
cmpb.2021.106543

Torchio, R., Lucchini, F., Schanen, J. L., Chadebec, O., & Meunier, G. (2022). FFT-PEEC:
A Fast Tool From CAD to Power Electronics Simulations. |EEE Transactions on Power
Electronics, 37(1), 700-713. https://doi.org/10.1109/TPEL.2021.3092431

Torchio, R., & Lucchini, L. (2020). FFT-PEEC. In GitHub repository. GitHub. https:
//github.com/UniPD-DII-ETCOMP/FFT-PEEC

Torchio, R., & Lucchini, L. (2021). FFT-NLIE. In GitHub repository. GitHub. https:
//github.com /UniPD-DII-ETCOMP /FFT-NLIE

Villena, J. F., Polimeridis, A., & Serralles, J. (2015). MARIE. In GitHub repository. GitHub.
https://github.com/thanospol/MARIE

Yucel, A. (2018). VoxHenry. In GitHub repository. GitHub. https://github.com/acyucel/
VoxHenry

Yucel, A. C., Georgakis, I. P., Polimeridis, A. G., Bagci, H., & White, J. K. (2018). VoxHenry:
FFT-Accelerated Inductance Extraction for Voxelized Geometries. IEEE Transactions on
Microwave Theory and Techniques, 66(4), 1723-1735. https://doi.org/10.1109/TMTT.
2017.2785842

Guillod, & Sullivan. (2025). PyPEEC: A 3D Quasi-Magnetostatic Solver using an FFT-Accelerated PEEC Method with Voxelization. Journal of 5
Open Source Software, 10(113), 6644. https://doi.org/10.21105/joss.06644.


https://doi.org/10.1016/j.cmpb.2021.106543
https://doi.org/10.1016/j.cmpb.2021.106543
https://doi.org/10.1109/TPEL.2021.3092431
https://github.com/UniPD-DII-ETCOMP/FFT-PEEC
https://github.com/UniPD-DII-ETCOMP/FFT-PEEC
https://github.com/UniPD-DII-ETCOMP/FFT-NLIE
https://github.com/UniPD-DII-ETCOMP/FFT-NLIE
https://github.com/thanospol/MARIE
https://github.com/acyucel/VoxHenry
https://github.com/acyucel/VoxHenry
https://doi.org/10.1109/TMTT.2017.2785842
https://doi.org/10.1109/TMTT.2017.2785842
https://doi.org/10.21105/joss.06644

	Summary
	Statement of Need
	Capabilities and Workflow
	Solver Performance
	Acknowledgments
	References

