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Summary

The partial element equivalent circuit method (PEEC) is a particularly interesting integral-
equation method for electromagnetic problems as it can be easily combined with circuit
simulations and does not require a discretization of the free space. This paper introduces
PyPEEC, an open-source Python solver targeting 3D quasi-magnetostatic problems such as
inductors, transformers, chokes, IPT coils, or busbars. The geometry is described with voxels
and the solver uses an FFT-accelerated variant of the PEEC method. The FFT acceleration
drastically reduces the computational cost and the memory footprint.

Statement of Need

Quasi-magnetostatic field simulations are widely used for the design and optimization of
electrical components (e.g., power electronics, packaging, IC design). Among the existing
numerical methods (e.g., FEM, FDTD, PEEC, BEM), the PEEC method features several
advantages (Jithesh & Pande, 2003; A. Ruehli et al., 2017; A. E. Ruehli, 1974; Torchio, 2019):

= Only the active materials are discretized (no need to mesh the vacuum/air).
= Intuitive understanding of the equation discretization process.
= Straightforward connection of external circuit elements.

The fundamental drawback of the classical PEEC method is that the matrix describing the
equation system is not sparse. This means that the computational cost and the memory
requirement become problematic for large problems.

This problem can be mitigated if the geometry is represented with voxels (Torchio, Lucchini, et
al., 2022; A. C. Yucel et al., 2018). The first advantage of such geometries is that the Green's
functions (i.e., the inductance and potential matrices) have analytical solutions, avoiding
computationally intensive numerical integrals (Hoer & Love, 1965; Piatek & Baron, 2012).
The second advantage is that, due to the regular voxel discretization, many coefficients of
the inductance and potential matrices are redundant. The dense matrices are block-Toeplitz
Toeplitz-block matrices and feature the following key properties (Lee, 1986; Polimeridis et al.,
2014):

= The block-Toeplitz Toeplitz-block matrices can be embedded into circulant tensors,
reducing the memory requirements from O(n?) to O(n).

= The matrix-vector multiplications can be done with Fourier transforms. With an FFT
algorithm, the computational complexity of matrix-vector multiplications is reduced from

O(n?) to O(nlog(n)).
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Different variants of the FFT-accelerated PEEC method have been shown to be extremely fast
for a large variety of electromagnetic problems, such as high-frequency transformers (Torchio,
Lucchini, et al., 2022), power inductors (Marconato & Lucchini, 2021), human body field
exposure (Torchio, Arduino, et al., 2022), nuclear fusion devices (Bettini et al., 2020), and
PCB layouts (Romano et al., 2023).

An open-source implementation (“FFT-PEEC") of the FFT-accelerated PEEC method already
exists (Torchio & Lucchini, 2020, 2021). However, this code can only handle magnetic
materials for static simulations (and not in the frequency domain). Moreover, depending on the
considered quasi-static problem (e.g., geometries with multiple conductors), the source code
requires some adaptations. The open-source tools “VoxHenry” and "MARIE" are also using
FFT-accelerated methods, but are specialized for full-wave solutions without magnetic materials
(Villena et al., 2015; A. Yucel, 2018). Finally, it should be noted that all the aforementioned
implementations depend on proprietary programming languages and libraries.

PyPEEC, the tool introduced in this paper, addresses these needs by providing a 3D quasi-
magnetostatic implementation of the FFT-accelerated PEEC method (Torchio, Lucchini, et
al., 2022). PyPEEC is a fully open-source (MPL 2.0 licence and implemented in Python) and
offers a general-purpose solver by allowing the description of arbitrary problems without having
to modify the source code.

Capabilities and Workflow

In this paper, the release 5.7 of PyPEEC is considered. PyPEEC solves 3D magnetostatic
and quasi-magnetostatic problems with voxel geometries. An arbitrary number of conductive
domains, magnetic domains (ideal and/or lossy), and sources (voltage and/or current) can
be used. The current density, flux density, electric potential, magnetic potential, and loss
density are computed. The free space magnetic field (near-field) can also be computed on a
point cloud. Additionally, the voltage, current, complex power, and impedance of the different
terminals are extracted.
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Figure 1: PyPEEC workflow consisting of the mesher, solver, viewer, and plotter
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PyPEEC is implemented in pure Python using NumPy, SciPy, Joblib, Rasterio, Shapely,
Pillow, Matplotlib, and PyVista. The solver is able to leverage multi-core CPUs and GPUs.
Optional HPC libraries are available for accelerating the sparse preconditioner factorization
(MKL/PARDISO and PyAMG) and the FFT operations (FFTW, MKL/FFT, and CuPy/CUDA).
PyPEEC can be used through an API, a command-line tool, or Jupyter notebooks. The package
is available through the Python package index (PyPi) and the community-driven Conda package
index (conda-forge). A Docker image with JupyterLab is also maintained.

Figure 1 depicts the PyPEEC workflow. First, the mesher builds the geometry (from vector
shapes, STL files, PNG files, or GERBER files), performs the voxelization, and checks the
validity of the discretization. Afterward, the solver creates the FFT-multiplication operators,
assembles the equation systems, extracts sparse preconditioners, solves the problem, and
post-processes the solution. The viewer and the plotter are used to visualize the results.
Alternatively, ParaView can be used to analyze and visualize the solutions.

Solver Performance

To demonstrate the performance of the solver, a planar air-core spiral inductor is considered
(Guillod & Sullivan, 2025). The inductor has a footprint of 4 mm? and is operated in the
40.68 MHz ISM band. Figure 2 shows the ratio between the AC and DC current densities, the
relative error on the extracted impedance, and the computational cost. The number of degrees
of freedom represents the number of unknowns for the PEEC problem (dense equation system).
The computational cost is evaluated with an AMD EPYC 7543 CPU (without GPUs).
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Figure 2: (a) Ratio between the AC and DC current densities. (b) Relative error on the extracted
equivalent resistance and the inductance. (c) Wall clock time duration for the complete workflow.

As the skin depth is smaller than the dimension of the conductor, the eddy currents are
non-negligible. This implies that, with a coarse discretization, the resistance value is less
accurate than the inductance value. With a tolerance of 4%, the quasi-static problem is solved
in 4 seconds. The FFT acceleration allows dense PEEC problems with 107 degrees of freedom
to be solved in 80 seconds.

The performances of PyPEEC are impacted by the following factors. For problems dominated
by eddy currents and/or containing magnetic materials, the majority of the computational
effort (typically over 70%) is linked to the FFT-accelerated multiplications. In such cases, the
performances are directly driven by the FFT solver and benefit from the available parallel and
GPU algorithms. Finally, it should be noted that PyPEEC is using a regular voxel structure
to represent the geometry. This implies that large geometries with small features cannot be
meshed efficiently.
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