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Summary
BayesEoR is a GPU-accelerated, MPI-compatible Python package for estimating the power
spectrum of redshifted 21-cm emission from interferometric observations of the Epoch of
Reionization (EoR). Utilizing a Bayesian framework, BayesEoR jointly fits for the 21-cm EoR
power spectrum and a “foreground” model, referring to bright, contaminating emission between
us and the cosmological signal, and forward models the instrument with which these signals are
observed. To perform the sampling, we use MultiNest (Buchner et al., 2014), which calculates
the Bayesian evidence as part of the analysis. Thus, BayesEoR can also be used as a tool for
model selection (see e.g. Sims et al., 2019).

Statement of need
Neutral hydrogen can undergo a spin-flip transition in which the quantum spins of the proton
and electron transition from an aligned to an anti-aligned state, or vice versa, resulting in
emission or absorption of a photon with a wavelength of 21-cm. The hydrogen 21-cm spin
temperature quantifies the relative number densities of atoms in the aligned and anti-aligned
states. Interferometric 21-cm cosmology experiments aim to measure the contrast between
the 21-cm spin temperature of neutral hydrogen and the radio background temperature in the
early Universe. By observing this signal at high redshift, we can learn a wealth of information
about the state of the intergalactic medium during the first billion years of cosmic history.
This information can, in turn, be used to infer properties of the first stars and galaxies that
transformed the hydrogen intergalactic medium from a cold neutral gas to a hot ionised plasma
during the Epoch of Reionization (EoR). Modern interferometers like HERA, LOFAR, and the
MWA have been designed to observe with many antennas simultaneously to maximize their
sensitivity to the 21-cm signal from the EoR. These experiments have shown that detecting
this signal is rife with difficulty (Abdurashidova et al., 2022; Mertens et al., 2020; Trott et al.,
2020). This is primarily due to the coupling of bright contaminating sources between us and
the cosmological signal, referred to as “foregrounds”, with the spectral structure imparted by
the instrument. Existing approaches to recovering the 21-cm signal from the data lack direct
modelling of the observed covariance between the 21-cm and foreground signals in the data.
Intrinsically, the 21-cm and foreground signals are uncorrelated. The instrument modulates
both signals identically during observation, however, making them covariant. This covariance
can be accounted for by forward modelling both signals, a key advantage of our approach
in BayesEoR. For a detailed comparison of BayesEoR with other existing methods, please see
section 7.1 of Sims et al. (2019) and section 1 of Burba et al. (2023).

BayesEoR is a GPU-accelerated, MPI-compatible Python implementation of a Bayesian frame-
work designed to jointly model the 21-cm and foreground signals and forward model the
instrument with which these signals are observed. Using these combined techniques, we can
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overcome the aforementioned difficulties associated with extracting a faint, background signal in
the presence of bright foregrounds. BayesEoR enables one to sample directly from the marginal
posterior distribution of the power spectrum of the underlying 21-cm signal in interferometric
data, enabling recovery of statistically robust and unbiased1 estimates of the 21-cm power
spectrum and its uncertainties (Burba et al., 2023; Sims et al., 2016, 2019; Sims & Pober,
2019). The power spectrum estimates (Δ2(𝑘)) from an analysis using the test dataset and
plotting code provided with BayesEoR can be found in Figure 1. This figure demonstrates
the primary output of BayesEoR: a posterior distribution of the dimensionless power spectrum
amplitude of the 21-cm EoR signal for each spherically-averaged 𝑘 bin in the model (right
subplots in Figure 1). From these posteriors, we can derive power spectrum estimates and
uncertainties (top left subplot in Figure 1). Mathematically, the spherically-averaged power
spectrum 𝑃(𝑘) is calculated as

𝑃(𝑘𝑖) =
1

𝑁𝑘,𝑖
∑

k
𝑃(k) (1)

where 𝑖 indexes the spherically-averaged 𝑘 bins, the sum is performed over all k in a spherical
shell satisfying 𝑘𝑖 ≤ |k| < 𝑘𝑖+Δ𝑘𝑖, and 𝑁𝑘,𝑖 is the number of voxels in the 𝑖-th spherical shell.
The spherically-averaged dimensionless power spectrum, Δ2(𝑘), which we infer in BayesEoR,
is related to 𝑃(𝑘) via

Δ2(𝑘𝑖) =
𝑘3𝑖
2𝜋2𝑃(𝑘𝑖) (2)

Running BayesEoR

Running a BayesEoR analysis requires an input dataset, a model of the instrument, and a set
of analysis parameters. A script is provided with BayesEoR for convenience which pre-processes
a pyuvdata-compatible dataset (Hazelton et al., 2017) of visibilities per baseline, time, and
frequency into a one-dimensional data vector, the required form of the input dataset to
BayesEoR. As part of the inference, BayesEoR forward models the instrument which requires
an instrument model containing the primary beam response of a “baseline” (pair of antennas)
and the “uv sampling” (the length and orientation of each baseline in the data). The primary
beam response is passed via a configuration file or command line argument. The uv sampling is
generated by the aforementioned convenience script to ensure that the ordering of the baseline
in the instrument model matches that in the visibility data vector. Analysis parameters must
also be set by the user to specify file paths to input and output data products and model
parameters used to construct the data model (e.g. the number of frequencies and times in
the data, the number of voxels in the model Fourier domain cube, the field of view of the
sky model). Note however that these analysis parameters must be chosen carefully based
on the data to be analyzed (please see section 2.3 of Burba et al., 2023 for more details on
choosing model parameters). Accordingly, because BayesEoR forward models the instrument,
we generate a model of the sky as part of our model visibilities calculation. When the EoR and
foregrounds can be adequately described by a sky model with a field of view equal to the width
of the primary beam, the memory requirements for a BayesEoR analysis are on the order of 10
GB. This is the case for the provided test dataset for which the disk and RAM requirements
are ~17 GB and ~12 GB, respectively. The field of view for the EoR and foreground sky models
can be set independently, however, which allows for the EoR to be modelled within the primary
field of view of the telescope while the foregrounds can be modelled across the whole sky. We
wish to note however that, in this fashion, modelling the whole sky can be computationally
demanding depending upon the data being analyzed. For example, in Burba et al. (2023)
we show that analyzing a relatively modest dataset (compared to those typically analyzed by

1Recovery of unbiased estimates of the 21-cm power spectrum requires that the field of view of the foreground
model encompasses the region of sky from which instrument-weighted foregrounds contribute significantly to
the observed data (Burba et al., 2023).
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HERA, LoFAR, or the MWA) can require ~400 GB of RAM2. Please see section 6.1 of Burba
et al. (2023) for more details.

Figure 1: Example outputs from a BayesEoR analysis of the provided test dataset with a known power
spectrum. The top left subplot shows the inferred dimensionless power spectrum estimates with 1𝜎
uncertainties in blue (Δ2(𝑘) as a function of spherically-averaged Fourier mode, 𝑘) and the expected
dimensionless power spectrum as the black, dashed line. The bottom left subplot shows the fractional
difference between the recovered and expected power spectra. The right subplots show the posterior
distribution of each power spectrum coefficient in the top left plot (𝜑𝑖 where 𝑖 indexes the spherically-
averaged 𝑘 bins) in blue with the expected power spectrum amplitude as the black, vertical, dashed lines.
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