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Summary
Movement primitives are a common representation of movements in robotics (Maeda et al.,
2017) for imitation learning, reinforcement learning, and black-box optimization of behaviors.
There are many types and variations. The Python library movement_primitives focuses on
imitation learning (see Figure 1), generalization, and adaptation of movement primitives
in Cartesian space. It implements dynamical movement primitives, probabilistic movement
primitives, as well as Cartesian and dual Cartesian movement primitives with coupling terms to
constrain relative movements in bimanual manipulation. They are implemented in Cython to
speed up online execution and batch processing in an offline setting. In addition, the library
provides tools for data analysis and movement evaluation.
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Figure 1: Illustration of imitation learning processes supported by movement_primitives. The photo was
extracted from Mronga (2022) under CC BY 4.0 DEED.

Statement of Need
Movement primitives are a common group of policy representations in robotics. They are able
to represent complex movement patterns, allow temporal and spatial modification, offer stability
guarantees, and are suitable for imitation learning without complicated hyperparameter tuning,
which are advantages over general function approximators like neural networks. Movement
primitives are white-box models for movement generation and allow to control several aspects of
the movement. There are types of dynamical movement primitives that allow to directly control
the goal in state space, the final velocity, or the relative pose of two robotic end-effectors.
Probabilistic movement primitives capture distributions of movements adequately and allow
conditioning in state space and blending of multiple movements. The main disadvantage of
movement primitives in comparison to general function approximators is that they are limited
in their capacity to represent behavior that takes into account complex sensor data during
execution. Nevertheless, various types of movement primitives have proven to be a reliable
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and effective tool in robot learning. A reliable tool deserves a similarly reliable open source
implementation. However, there are only a few actively maintained, documented, and easy to
use implementations. One of these is the library movement_primitives. It combines several
types of dynamical movement primitives and probabilistic movement primitives in a single
library with a focus on Cartesian and bimanual movements.

Movement Primitives

Dynamical Movement Primitives
Dynamical Movement Primitives (DMPs) are the most prominent example of movement
primitives (Ijspeert et al., 2002, 2013). From a high-level perspective (Fabisch & Metzen,
2014), a DMP is a policy

𝑥𝑡+1 = 𝜋𝑤,𝑣(𝑥𝑡, 𝑡),

where 𝑥𝑡 is the state of an agent (position, velocity, and acceleration) at time 𝑡, 𝑤 are the
weights (parameters) that define the shape of the movement, and 𝑣 are meta-parameters. The
exact definition of the meta-parameters 𝑣 depends on the DMP type, but most types allow
to set the initial state 𝑥0, the final state 𝑔, and the duration of the movement 𝜏. A DMP
generates a trajectory in state space so that a controller that translates states 𝑥𝑡, 𝑥𝑡+1 to
control commands is required.

DMPs have been used for imitation learning, in which one demonstration is enough to learn
a DMP. DMPs can also be used in a reinforcement learning setting, in which the weights of
the DMP or the meta-parameters can be learned. Saveriano et al. (2023) provide a survey of
DMPs and how they can be used.

In the movement_primitives library, we implement several types that are important for Cartesian
movement generation: an extension that includes the final velocity as a meta-parameter (Mülling
et al., 2013), DMPs for Cartesian poses in three dimensions with unit quaternions (Ude et
al., 2014), and DMPs that define bimanual movements by introducing a coupling term that
controls the relative motion of two arms (Gams et al., 2013).

Probabilistic Movement Primitives
Another type of movement primitives implemented in this library are Probabilistic Movement
Primitives (ProMPs) (Paraschos et al., 2013) that capture the distribution of multiple demon-
strations. Their probabilistic formulation allows to modify movements by conditioning, for
instance, on viapoints.

Implementations of Movement Primitives
The movement_primitives library is a reimplementation and extension of the movement
primitive features of BOLeRo (Fabisch et al., 2020). BOLeRo is a C++/Python framework for
behavior learning and optimization. However, the focus is very broad and more on reinforcement
learning and behavior parameter optimization than on imitation learning.

Another similar library is dmpbbo (Stulp & Raiola, 2019), which has a general DMP imple-
mentation and additional components to optimize the parameters of DMPs in reinforcement
learning settings. The library is designed to train DMPs in Python and execute them in C++.
Both implementations are not well-suited for imitation learning because additional tooling
for data analysis and deployment is required. Switching between C++ and Python is also
not convenient for various reasons: building and installing these packages is complicated,
continuous integration is hard to set up, code maintenance is complicated, and it does not
integrate easily with the Python scientific ecosystem.
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There are more implementations listed by Saveriano et al. (2023) (available at https://git-
lab.com/dmp-codes-collection/third-party-dmp). A lot of these are examplary Matlab scripts
and not maintained anymore, or only implementations of specific papers. Other libraries
do not support Cartesian movement primitives, which are only available in BOLeRo and
movement_primitives. The latter also supports bimanual movements through dual Cartesian
DMPs.

Design and Features
The main contributions of movement_primitives are (1) a fast Python-only library for movement
primitives, and (2) robust implementations of several types of movement primitives (see Table 1).
Our focus is on Cartesian movement primitives that are used to control one or two robotic arms
and offer exemplary implementations of coupling terms for Cartesian (bimanual) DMPs. These
can be used for obstacle avoidance and to constrain dual arm motions to relative positions
and/or orientations.

Table 1: Overview of implemented movement primitives.

Class Description Publication
DMP Standard DMP Ijspeert et al. (2013)
DMP Smooth spatial scaling Pastor et al. (2009)
DMPWithFinalVelocity Allows final velocity Mülling et al. (2013)
CartesianDMP DMP of Cartesian poses Ude et al. (2014)
DualCartesianDMP DMP of two Cartesian poses Gams et al. (2013)
ProMP Standard ProMP Paraschos et al. (2013)

Furthermore, movement_primitives supports the whole imitation learning pipeline, including
data analysis through plotting and visualization (based on pytransform3d (Fabisch, 2019) and
Open3D (Zhou et al., 2018)), data preprocessing for imitation learning, good integration with
the scientific ecosystem in Python, simulation of learned movement primitives (in PyBullet
(Coumans & Bai, 2016--2021)), export to permanent data formats (pickle, JSON, YAML), and
analysis of kinematic feasibility. Although it has several dependencies and requires compilation
because of its Cython (Dalcin et al., 2011) components, it is possible to simply install it with
pip from PyPI.

Example: Rotating a Compact Solar Panel with a Humanoid
Figure 2 and Figure 3 show a humanoid robot rotating an object with two hands. The movement
is generated by a dual Cartesian DMP trained on a demonstrated rotation movement. The
width of the object is known. Hence, it can easily be adapted for similar objects with a different
size through a coupling term defined by Gams et al. (2013).
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Figure 2: RH5 Manus (Boukheddimi et al., 2022) rotating a compact solar panel.

Figure 3: Visualization of similar rotation trajectory with another humanoid robot.

A similar task has been solved by Mronga & Kirchner (2021) with two Kuka iiwa arms. They
record a dataset for different panel sizes via kinesthetic teaching and use Gaussian mixture
regression to represent the distribution of solutions and condition it on the object width to
generalize. This is easier with ProMPs: for each demonstration, we compute ProMP weights,
concatenate them with the task parameters over which we want to generalize, and learn a
Gaussian mixture model, which we can condition on task parameters to generate ProMPs that
define trajectory distributions to solve these tasks (Figure 4 and Figure 5).
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Figure 4: Mean trajectories for conditional ProMPs and panel widths 30/40/50 cm.

Figure 5: At each step, the position distribution defined by the conditioned ProMP is indicated by an
equiprobable ellipsoid. The arms are at the mean start position for width 50 cm.

Benchmark of DMP Implementations
Since execution speed of DMPs is relevant in robotics, we compare several DMP implementa-
tions from dmpbbo and movement_primitives. For this purpose, we create a minimum jerk
trajectory of 𝑁 dimensions that moves from 0 ∈ ℝ𝑁 to 1 ∈ ℝ𝑁 in one second, train a DMP
on it, and execute the DMP step by step. We use 𝑀 weights per dimension, and step through
the DMP with Δ𝑡 = 0.001𝑠. The concept of dmpbbo is to train in Python and run DMPs
in C++. We still analyze the Python version and the C++ version of dmpbbo as well as
movement_primitives with various implementations of the integration (Euler integration with
ℎ = 0.1 ⋅ Δ𝑡 and RK4 integration, both in Python and Cython). The default integration
method of dmpbbo is RK4. Results for varying configurations of 𝑁 and 𝑀 are summarized
in Figure 6, Figure 7 and Table 2. While the number of weights per dimension and the
number of dimensions have a considerable influence on the runtime of dmpbbo, the influence
on the runtime of movement_primitives is negligible because NumPy (Harris et al., 2020)
vectorization is used. More specifically, computing all steps of a DMP with 1 s duration
at 1 kHz (Δ𝑡 = 0.001𝑠) with 𝑁 = 50 dimensions and 𝑀 = 60 weights per dimension
takes 0.0822 ± 0.0015𝑠 with the movement_primitives library and RK4 integration in Cython,
which means 8.51% of the DMP’s runtime is spent on computing steps. This allows online
adaptation of the trajectory. dmpbbo’s C++ implementation is the best candidate for a low
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number of dimensions and weights per dimension. In this domain it outperforms all other
implementations by a considerable margin. However, it scales linearly with these numbers.
Hence, it is considerably slower for 𝑁 = 50 and 𝑀 = 60 than any RK4 implementation of
movement_primitives. The Python version of dmpbbo is not able to run some configurations
in real time. For example, 𝑁 = 6,𝑀 = 30 needs 5.9292 ± 0.0955𝑠 to compute.
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Figure 6: Benchmark of execution speed for various DMP implementations and configurations. Each bar
shows an average over 100 stepwise executions of a DMP. Varying number of weights per dimension 𝑀,
number of dimensions 𝑁 = 6.
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Figure 7: Benchmark of execution speed for various DMP implementations and configurations. Each bar
shows an average over 100 stepwise executions of a DMP. Varying number of dimensions 𝑁, number of
weights per dimension 𝑀 = 30.

Table 2: Benchmark results for DMP execution. Best performance per setup in bold.

Library Implementation 𝑁 𝑀 Time 𝜇 ± 𝜎 [s]
dmpbbo C++ 3 10 0.0027 ± 0.0001

30 0.0077 ± 0.0001
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Library Implementation 𝑁 𝑀 Time 𝜇 ± 𝜎 [s]
60 0.0144 ± 0.0004

6 10 0.0049 ± 0.0001
30 0.0146 ± 0.0002
60 0.0300 ± 0.0052

15 10 0.0129 ± 0.0028
30 0.0376 ± 0.0059
60 0.0729 ± 0.0103

50 10 0.0401 ± 0.0068
30 0.1236 ± 0.0174
60 0.2405 ± 0.0308

dmpbbo Python 3 10 0.8137 ± 0.0164
30 1.6986 ± 0.0319
60 3.0244 ± 0.0454

6 10 1.3946 ± 0.0228
30 3.1676 ± 0.0746
60 5.9292 ± 0.0955

15 10 3.2079 ± 0.0593
30 7.4972 ± 0.1366
60 14.2590 ± 0.2811

50 10 9.7134 ± 0.0448
30 24.6018 ± 2.0579
60 47.4420 ± 2.0075

movement_primitives euler-cython 3 10 0.1946 ± 0.0019
30 0.2223 ± 0.0070
60 0.2234 ± 0.0031

6 10 0.1912 ± 0.0033
30 0.2301 ± 0.0043
60 0.2306 ± 0.0060

15 10 0.2117 ± 0.0067
30 0.2334 ± 0.0041
60 0.2310 ± 0.0013

50 10 0.2260 ± 0.0009
30 0.2547 ± 0.0273
60 0.2529 ± 0.0044

movement_primitives rk4-cython 3 10 0.0447 ± 0.0006
30 0.0737 ± 0.0018
60 0.0760 ± 0.0003

6 10 0.0471 ± 0.0036
30 0.0733 ± 0.0003
60 0.0761 ± 0.0003

15 10 0.0468 ± 0.0022
30 0.0754 ± 0.0005
60 0.0776 ± 0.0002

50 10 0.0752 ± 0.0002
30 0.0794 ± 0.0063
60 0.0822 ± 0.0015

Conclusion
Although movement primitives are a popular tool in robot learning, there is a lack of well
maintained implementations in particular for bimanual and Cartesian movements. move-
ment_primitives provides a well-tested, robust implementation of various movement primitives
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with the goal of generating Cartesian robot movements. It integrates well with the existing
Python scientific ecosystem.
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