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Summary
Machine learning (ML) is now ubiquitous in all scientific fields, but there remains a significant
challenge to understanding and explaining model performance (Angelov et al., 2021; Zhang et
al., 2021). Therefore, there is increasing interest in applying methods from other scientific
disciplines (e.g. physics and biology) to improve the performance and explainability of machine
learning algorithms (Hassabis et al., 2017; Karniadakis et al., 2021). One methodology that has
proved useful to understand machine learning performance is the energy landscape framework
from chemical physics (Wales, 2003).

The energy landscape framework is a set of algorithms that map the topography of continuous
surfaces by their stationary points. The topography is encoded as a weighted graph (Noé
& Fischer, 2008) and in application to potential energy surfaces all physical properties of
a system can be extracted from this graph (Swinburne & Wales, 2020). Examples of the
methodology applied to potential energy surfaces explain physical phenomena for proteins
(Röder et al., 2019), small molecules (Matysik et al., 2021), atomic clusters (Csányi et al.,
2023) and crystalline solids (Pracht et al., 2023).

Since the energy landscape framework is applicable to any given continuous surface, the
methodology can also be applied to a wide range of machine learning algorithms through
the corresponding loss function surface. Fitting of a machine learning model usually aims to
locate low-valued or diverse solutions, and an understanding of the solution space topography
explains model reproducibility and performance. Leveraging the energy landscape framework
the performance and reliability of neural networks (Niroomand et al., 2022), Gaussian processes
(Niroomand et al., 2023) and clustering algorithms (Dicks & Wales, 2022, 2023; Wu et al.,
2023) has been explored. Moreover, it has been used to explain the effect of dataset roughness
on ML model performance (Dicks et al., 2024). A tutorial review of different applications is
given in Niroomand et al. (2024).

Statement of need
The topsearch Python package provides a rapid prototyping software for application of the
energy landscape framework. It contains the functionality to be used for both potential energy
surfaces and the loss function surfaces of varied machine learning models.

There is limited software for explicitly analysing the topography of loss function surfaces. These
surfaces are considered implicitly when optimising an ML model through local minimisation,
but none attempt to capture global topographical features of the parameter space. There
is significantly more software for analysing potential energy surfaces, the majority of which
approximate topographical features indirectly. Popular examples that aim to explore diverse
regions of the surface through enhanced sampling are PyEMMA (Scherer et al., 2015) and
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large molecular simulation suites such as LAMMPS (Thompson et al., 2022), GROMACS
(Abraham et al., 2015), and AMBER (Case et al., 2023) the simulations of which can be
simplified using PLUMED (Tribello et al., 2014). Explicit location of topographical features,
such as stationary points, is more common in quantum chemistry and can be performed by
software such as VTST (Henkelman, 2018), PASTA (Kundu et al., 2018), PyMCD (Lee et
al., 2023) and ORCA (Neese et al., 2020). The explicit computation of topography using the
energy landscape framework has several advantages for application to machine learning and
none of the above software contains all the required functionality.

Current leading tools for applying the energy landscape framework are the suite of FORTRAN
programs: GMIN (D. J. Wales, 2024a) OPTIM (D. J. Wales, 2024b) and PATHSAMPLE (D. J.
Wales, 2024c). This software implements almost all functionality described within the energy
landscape literature and, being written in a compiled language, is highly performant. Whilst a
clear choice for production work where performance is critical, it is not without limitations
for rapid prototyping. The user requires a detailed understanding of, and to pass information
between, three large distinct pieces of software. There is a Python wrapper, pylfl (Niroomand,
2023), which simplifies their use, but does not remove the limitation of multiple programs that
all require a detailed understanding. Furthermore, the software suite contains limited support
for machine learning models, and addition of new models is challenging and time-consuming
due to a lack of implementations of ML libraries in FORTRAN. Therefore, there is a need for a
single software that performs the energy landscape framework for both ML and physics, which
integrates seamlessly with ML libraries, thus enabling rapid prototyping in this domain.

topsearch replaces the functionality of the FORTRAN software suite in a single software
package, reducing the need for data transfer and subsequent parameterisation and setup. The
package, written entirely in Python, contains additional novel functionality for machine learning,
and due to the prevalence of Python in machine learning further new models can be included
quickly and easily. Furthermore, the implementation is significantly shorter, containing less
than a hundredth of the lines of code; enabling faster developer onboarding.

Applications
The Github repository (https://github.com/IBM/topography-searcher) contains examples for
varied applications, which are listed in turn below.

• example_function - This folder contains examples for mapping the surface topography
of an arbitrary function. The examples provide an introduction to the methodology, and
illustrate the major code functionality. Application to two-dimensional functions allows
direct visualisation of the surfaces, which makes clear the topographical analysis.

• dataset_roughness - Illustration of the novel code application to quantify dataset
roughness (Dicks et al., 2024), an example landscape from which is shown in Figure 1.
This analysis can uniquely explain and predict ML regression performance both globally
and locally, even in the absence of training data.
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Figure 1: Landscape of a two-dimensional surface taken from a chemical dataset. The topography,
encoded as a weighted graph, is visualised directly on the corresponding response surface.

Atomic and molecular systems require significant additional functionality. However, the
examples illustrate that the scripts remain remarkably similar.

• atomic - An example that performs exploration of the potential energy surface of a small
atomic cluster.

• molecular - These examples illustrate how to explore the potential energy surfaces of
small molecules using quantum chemistry.

This list of examples does not form an exhaustive set of use cases. Previous applications of
this methodology, which will also be possible using topsearch, are protein and nucleic acids
potential energy surfaces and Gaussian process, neural network and clustering loss function
surfaces. Moreover, there are many additional machine learning models that could be analysed,
and the Python implementation allows for their rapid inclusion.

Conclusions
The topsearch Python package fulfils the need for a rapid prototyping and analysis tool for
the energy landscape framework that can be applied to both physics and machine learning
models. This software is significantly more lightweight than existing solutions; a large reduction
in code and integration in a single piece of software ensures the Python implementation is
significantly easier to develop. Moreover, the package provides a simpler interface for accessing
the functionality, and in tandem with detailed examples, results in a shallower learning curve
for use within diverse applications. Lastly, the software is unique in the amount of machine
learning models that can be explored and and can easily be extended with existing Python
implementations. Our aim is that this software package will aid diverse researchers from
computer science to chemistry by providing a simple solution for application of the energy
landscape framework.

Acknowledgements
LD and EOP-K would like to acknowledge the financial support of the Hartree National Centre
for Digital Innovation – a collaboration between the Science and Technology Facilities Council

Dicks, & Pyzer-Knapp. (2024). TopSearch: a Python package for topographical analysis of machine learning models and physical systems. Journal
of Open Source Software, 9(99), 6711. https://doi.org/10.21105/joss.06711.

3

https://doi.org/10.21105/joss.06711


and IBM. The authors would also like to thank Nicholas Williams, Matthew Wilson, Nicolas
Galichet and Vlad Cărare for their helpful feedback as early users of the package.

References
Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015).

GROMACS: High performance molecular simulations through multi-level parallelism from
laptops to supercomputers. SoftwareX, 1, 19–25. https://doi.org/10.1016/j.softx.2015.06.
001

Angelov, P. P., Soares, E. A., Jiang, R., Arnold, N. I., & Atkinson, P. M. (2021). Explainable
artificial intelligence: an analytical review. Wiley Interdiscip. Rev.: Data Min. Knowl.
Discov., 11, e1424. https://doi.org/10.1002/widm.1424

Case, D. A., Aktulga, H. M., Belfon, K., Ben-Shalom, I. Y., Berryman, J. T., Brozell, S. R.,
Cerutti, D. S., III, T. E. C., Cisneros, G. A., Cruzeiro, V. W. D., Darden, T. A., Forouzesh,
N., Giambaşu, G., Giese, T., Gilson, M. K., Gohlke, H., Goetz, A. W., Harris, J., Izadi, S.,
… Kollman, P. A. (2023). AMBER 2023. https://ambermd.org/doc12/Amber23.pdf

Csányi, G., Morgan, J. W. R., & Wales, D. J. (2023). Global analysis of energy landscapes
for materials modeling: a test case for C60. J. Chem. Phys., 159, 104107. https:
//doi.org/10.1063/5.0167857

D. J. Wales. (2024a). GMIN: A program for basin-hopping global optimisation, basin-sampling,
and parallel tempering. https://www-wales.ch.cam.ac.uk/GMIN/

D. J. Wales. (2024b). OPTIM: A program for geometry optimisation and pathway calculations.
http://www-wales.ch.cam.ac.uk/OPTIM/

D. J. Wales. (2024c). PATHSAMPLE: A program for generating connected stationary point
databases and extracting global kinetics. http://www-wales.ch.cam.ac.uk/PATHSAMPLE/

Dicks, L., Graff, D. E., Jordan, K. E., Coley, C. W., & Pyzer-Knapp, E. O. (2024). A
physics-inspired approach to the understanding of molecular representations and models.
Mol. Syst. Des. Eng. https://doi.org/10.1039/D3ME00189J

Dicks, L., & Wales, D. J. (2022). Elucidating the solution structure of the 𝐾-means cost
function using energy landscape theory. J. Chem. Phys., 156, 054109. https://doi.org/10.
1063/5.0078793

Dicks, L., & Wales, D. J. (2023). Evolution of 𝐾-means solution landscapes with the addition
of dataset outliers and a robust clustering comparison measure for their analysis. arXiv.
https://doi.org/10.48550/arXiv.2306.14346

Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired
artificial intelligence. Neuron, 95, 245–258. https://doi.org/10.1016/j.neuron.2017.06.011

Henkelman, G. (2018). VTST tools. https://vtstools.readthedocs.io/en/latest/index.html

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021).
Physics-informed machine learning. Nat. Rev. Phys., 3, 422–440. https://doi.org/10.
1038/s42254-021-00314-5

Kundu, S., Bhattacharjee, S., Lee, S.-C., & Jain, M. (2018). PASTA: Python Algorithms for
Searching Transition stAtes. Comput. Phys. Commun., 233, 261–268. https://doi.org/10.
1016/j.cpc.2018.06.026

Lee, K., Kim, J. H., & Kim, W. Y. (2023). pyMCD: Python package for searching transition
states via the multicoordinate driven method. Comput. Phys. Commun., 291, 108831.
https://doi.org/10.1016/j.cpc.2023.108831

Matysik, S. C., Wales, D. J., & Jenkins, S. J. (2021). Rotational dynamics of desorption:

Dicks, & Pyzer-Knapp. (2024). TopSearch: a Python package for topographical analysis of machine learning models and physical systems. Journal
of Open Source Software, 9(99), 6711. https://doi.org/10.21105/joss.06711.

4

https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1002/widm.1424
https://ambermd.org/doc12/Amber23.pdf
https://doi.org/10.1063/5.0167857
https://doi.org/10.1063/5.0167857
https://www-wales.ch.cam.ac.uk/GMIN/
http://www-wales.ch.cam.ac.uk/OPTIM/
http://www-wales.ch.cam.ac.uk/PATHSAMPLE/
https://doi.org/10.1039/D3ME00189J
https://doi.org/10.1063/5.0078793
https://doi.org/10.1063/5.0078793
https://doi.org/10.48550/arXiv.2306.14346
https://doi.org/10.1016/j.neuron.2017.06.011
https://vtstools.readthedocs.io/en/latest/index.html
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1016/j.cpc.2018.06.026
https://doi.org/10.1016/j.cpc.2018.06.026
https://doi.org/10.1016/j.cpc.2023.108831
https://doi.org/10.21105/joss.06711


methane and ethane at stepped and kinked platinum surfaces. J. Phys. Chem. C, 125,
27938–27948. https://doi.org/10.1021/acs.jpcc.1c09120

Neese, F., Wennmohs, F., Becker, U., & Riplinger, C. (2020). The ORCA quantum chemistry
program package. J. Chem. Phys., 152, 224108. https://doi.org/10.1063/5.0004608

Niroomand, M. P. (2023). pylfl. https://pypi.org/project/pylfl/

Niroomand, M. P., Cafolla, C. T., Morgan, J. W. R., & Wales, D. J. (2022). Characterising
the area under the curve loss function landscape. Mach. Learn.: Sci. Tech., 3, 015019.
https://doi.org/10.1088/2632-2153/ac49a9

Niroomand, M. P., Dicks, L., Pyzer-Knapp, E. O., & Wales, D. J. (2023). Physics inspired
approaches to understanding Gaussian processes. arXiv. https://doi.org/10.48550/arXiv.
2305.10748

Niroomand, M. P., Dicks, L., Pyzer-Knapp, E. O., & Wales, D. J. (2024). Insights into
machine learning models from chemical physics: an energy landscapes approach (EL for
ML). Digital Discovery. https://doi.org/10.1039/D3DD00204G

Noé, F., & Fischer, S. (2008). Transition networks for modelling the kinetics of conformational
change in macromolecules. Curr. Opin. Struct. Biol., 18, 154–162. https://doi.org/10.
1016/j.sbi.2008.01.008

Pracht, P., Morgan, J. W. R., & Wales, D. J. (2023). Exploring energy landscapes for
solid-state systems with variable cells at the extended tight-binding level. J. Chem. Phys.,
159, 064801. https://doi.org/10.1063/5.0159367

Röder, K., Joseph, J. A., Husic, B. E., & Wales, D. J. (2019). Energy landscapes for
proteins: from single funnels to multifunctional systems. Adv. Theory Simul., 2, 1800175.
https://doi.org/10.1002/adts.201800175

Scherer, M. K., Trendelkamp-Schroer, B., Paul, F., Pérez-Hernández, G., Hoffmann, M.,
Plattner, N., Wehmeyer, C., Prinz, J.-H., & Noé, F. (2015). PyEMMA 2: A software
package for estimation, validation, and analysis of Markov models. J. Chem. Theory
Comput., 11, 5525–5542. https://doi.org/10.1021/acs.jctc.5b00743

Swinburne, T. D., & Wales, D. J. (2020). Defining, calculating and converging observables
of a kinetic transition network. J. Chem. Theory Comput., 16, 2661–2679. https:
//doi.org/10.1021/acs.jctc.9b01211

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P.
S., Veld, P. J. in ’t, Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J.,
Tranchida, J., Trott, C., & Plimpton, S. J. (2022). LAMMPS – a flexible simulation tool
for particle-based materials modeling at the atomic, meso, and continuum scales. Comput.
Phys. Commun., 271, 10817. https://doi.org/10.1016/j.cpc.2021.108171

Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C., & Bussi, G. (2014). PLUMED
2: New feathers for an old bird. Comput. Phys. Commun., 185, 604–613. https:
//doi.org/10.1016/j.cpc.2013.09.018

Wales, D. J. (2003). Energy Landscapes. Cambridge University Press. https://doi.org/10.
1017/CBO9780511721724

Wu, Y., Dicks, L., & Wales, D. J. (2023). Archetypal solution spaces for clustering gene
expression datasets in identification of cancer subtypes. arXiv. https://doi.org/10.48550/
arXiv.2305.17279

Zhang, Y., Tiňo, P., Leonardis, A., & Tang, K. (2021). A survey on neural network
interpretability. IEEE Trans. Emerg. Top. Comput. Intell., 5, 726–742. https:
//doi.org/10.1109/TETCI.2021.3100641

Dicks, & Pyzer-Knapp. (2024). TopSearch: a Python package for topographical analysis of machine learning models and physical systems. Journal
of Open Source Software, 9(99), 6711. https://doi.org/10.21105/joss.06711.

5

https://doi.org/10.1021/acs.jpcc.1c09120
https://doi.org/10.1063/5.0004608
https://pypi.org/project/pylfl/
https://doi.org/10.1088/2632-2153/ac49a9
https://doi.org/10.48550/arXiv.2305.10748
https://doi.org/10.48550/arXiv.2305.10748
https://doi.org/10.1039/D3DD00204G
https://doi.org/10.1016/j.sbi.2008.01.008
https://doi.org/10.1016/j.sbi.2008.01.008
https://doi.org/10.1063/5.0159367
https://doi.org/10.1002/adts.201800175
https://doi.org/10.1021/acs.jctc.5b00743
https://doi.org/10.1021/acs.jctc.9b01211
https://doi.org/10.1021/acs.jctc.9b01211
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2013.09.018
https://doi.org/10.1016/j.cpc.2013.09.018
https://doi.org/10.1017/CBO9780511721724
https://doi.org/10.1017/CBO9780511721724
https://doi.org/10.48550/arXiv.2305.17279
https://doi.org/10.48550/arXiv.2305.17279
https://doi.org/10.1109/TETCI.2021.3100641
https://doi.org/10.1109/TETCI.2021.3100641
https://doi.org/10.21105/joss.06711

	Summary
	Statement of need
	Applications
	Conclusions
	Acknowledgements
	References

