
LiGuard: Interactively and Rapidly Create Point-Cloud
and Image Processing Pipelines
Muhammad Shahbaz 1 and Shaurya Agarwal 1

1 University of Central Florida, USA
DOI: 10.21105/joss.06751

Software
• Review
• Repository
• Archive

Editor: Hugo Ledoux
Reviewers:

• @chenzhaiyu
• @tgoelles

Submitted: 16 April 2024
Published: 23 June 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
There is a growing interest in the development of lidar-based applications in domains like
robotics, autonomous driving, traffic monitoring, infrastructure inspection, and many areas of
environmental surveying and mapping. In many cases, these applications rely on solutions that
are not end-to-end but rather a sequential combination (a pipeline) of individual data processing
functions such as data readers, pre-processors, application-specific algorithms or models, post-
processors, visualizers, etc. Creating such multi-step solutions often requires extensive revisions
of the proposed processing pipeline, including enabling or disabling certain functions, fine-tuning
parameters, and even completely replacing parts of the solution. Such revisions pose challenges
to the speed of research and even to the reuse of it, due to interdependencies among functions.
To address this issue, LiGuard is presented. It is a software framework that provides an
easy-to-use graphical user interface (GUI) that helps researchers rapidly build and test their
point cloud (and corresponding image) processing pipelines. It allows them to dynamically
add/remove/reorder functions, adjust the parameters of those functions, and visualize results in
a live, interactive manner compared to other packages where such modifications often require
re-executing the program script. Moreover, because it creates all the meta files in structured
directories, it allows easy sharing of the created pipelines or the individual functions used in
those pipelines.

LiGuard features, out of the box, data reading for many common dataset formats, including
support for reading calibration and label data. Moreover, it provides an increasing list of
commonly used algorithm components ranging from basic data preprocessors to advanced object
detection and tracking algorithms. Additionally, it establishes a straightforward standard for
adding custom functions/algorithms, allowing users to integrate unique components into their
pipelines. For the latest updates on supported features, please see LiGuard’s documentation.

Note: LiGuard is built on many standard Python libraries and packages for data processing and
visualization, including Open3D (Zhou et al., 2018), OpenCV (Bradski, 2000), Numpy (Harris
et al., 2020), and SciPy (Virtanen et al., 2020). It is designed to be used interactively and is,
therefore, not ideal for processing very large datasets. We provide a utility liguard_cmd that
processes data slightly faster by removing GUI and by leveraging Dask (Dask Development
Team, 2016) for parallel processing. However, since process pipelines are mostly sequential,
the output generation is as fast as the slowest step in the pipeline.

Statement of Need
Recent advancements in lidar technology have significantly broadened its applicability across
various domains, making it a potential sensor for precise measurement. Innovations such as
solid-state lidar and nanophotonics-based devices have enhanced the performance, reliability,
and cost-effectiveness of these sensors, enabling their use in diverse fields including autonomous
driving, environmental monitoring, and industrial automation (Li et al., 2022). Additionally,

Shahbaz, & Agarwal. (2025). LiGuard: Interactively and Rapidly Create Point-Cloud and Image Processing Pipelines. Journal of Open Source
Software, 10(110), 6751. https://doi.org/10.21105/joss.06751.

1

https://orcid.org/0009-0003-6377-8274
https://orcid.org/0000-0001-7754-6341
https://doi.org/10.21105/joss.06751
https://github.com/openjournals/joss-reviews/issues/6751
https://github.com/m-shahbaz-kharal/LiGuard-2.x/
https://doi.org/10.5281/zenodo.15705277
https://3d.bk.tudelft.nl/hledoux
https://orcid.org/0000-0002-1251-8654
https://github.com/chenzhaiyu
https://github.com/tgoelles
https://creativecommons.org/licenses/by/4.0/
https://m-shahbaz-kharal.github.io/LiGuard-2.x/
https://github.com/m-shahbaz-kharal/LiGuard-2.x/blob/dev_2.x/liguard/liguard_cmd.py
https://doi.org/10.21105/joss.06751


the integration of advanced optics and beam steering technologies has improved the spatial
resolution and operational efficiency of lidar systems, facilitating their deployment in complex
environments for applications ranging from agriculture to urban planning (Kim et al., 2022;
Zhao et al., 2022). As the lidar sensors are becoming more and more mainstream, there is
an increasing need for software tools that help standardize rapid research and discovery, and
facilitate easy reproducibility of experiments.

LiGuard fulfills a critical need for interactive research in lidar data processing, where iterative
adjustments and refinements to processing pipelines are essential and are otherwise time
consuming. While it is not optimized for large-scale datasets such as pointcloudset (Goelles et
al., 2021) or focus operating-system-wide utility and integration such as ROS (Macenski et al.,
2022), its user-friendly interface allows researchers to dynamically modify and visualize their
workflows, facilitating rapid experimentation and adaptation. Although PDAL (Contributors,
2024), a notable library for creating point cloud processing pipelines, offers much more
versatile control over pipelines by providing abstract access, filtering, exploitation, and workflow
management capabilities, it lacks interactivity and live parameter tuning which is often crucial
in fine-tuning multi-step pipelines. PCL (Rusu & Cousins, 2011), Open3D (Zhou et al., 2018),
and others such as laspy (Brown & Montaigu, 2012), pyntcloud (Pyntcloud Development
Team, 2021), Pyoints (Lamprecht, 2019), etc., are low-level libraries that offer fine access to
underlying data and are designed to be used as a base for the development of versatile 3D
applications. LiGuard is also primarily built on Open3D for GUI and 3D visualizations.

LiGuard segregates the data processing pipeline from the application logic, making it a modular,
reusable, and extensible framework. It is, at its core, a combination of five sub-modules, (1)
Data I/O, (2) Process Configuration, (3) Inter-Process Data Sharing, (4) Data Processing,
and (5) Visualization. During its development, a great focus was put towards minimizing
redundant efforts by abstracting common tasks. Therefore, Data I/O, Inter-Process Data
Sharing, and Visualization sub-modules are designed to operate seamlessly in the background.
While these components can be modified by contributors, they are intentionally abstracted to
relieve researchers from the complexities of efficient data reading, process management for
interactivity, and visualization tasks. This, in turn, allows researchers to focus on two main
aspects of their point-cloud data processing pipelines: the processes they need to execute on
the data, and the configuration of those processes. LiGuard facilitates this by allowing users
to create custom functions along their YAML configuration files. These custom functions can
then be used without restarting the application.

Shahbaz, & Agarwal. (2025). LiGuard: Interactively and Rapidly Create Point-Cloud and Image Processing Pipelines. Journal of Open Source
Software, 10(110), 6751. https://doi.org/10.21105/joss.06751.

2

https://doi.org/10.21105/joss.06751


Architecture

Figure 1: LiGuard’s Architecture

LiGuard is built on top of the Open3D (Zhou et al., 2018) and OpenCV (Bradski, 2000)
libraries, allowing researchers and contributors to leverage the extensive functionalities provided
by these libraries. A high-level architecture is presented in Figure 1 consisting of five main
components: (1) GUI (purple), (2) Data Handlers (green), (3) Shared Configuration Dictionary
(blue), (4) Shared Data Dictionary (orange), and (5) Research Algorithms. The GUI component
is responsible for creating an interface for researchers to interact with the framework and for
visualizations of both lidar and image data. The Data Handlers component is responsible
for reading data from disk/sensor(s). The Shared Configuration Dictionary and Shared Data
Dictionary components are responsible for sharing configuration and data, respectively, between
different components of the framework. The Research Algorithms component is responsible
for implementing the algorithms that process the data. The darker blue rectangular box at
the top shows the pipeline directory where user-created data handler(s) and algorithm(s)
reside along with the meta files (YAML, .yml). Please note that the research algorithms are
analogous to the functions mentioned in the summary above.

Contributions
M.S. and S.A. conceived the idea of LiGuard. M.S. developed the framework, wrote the
documentation, and the manuscript. S.A. reviewed the manuscript and provided feedback.
Both authors have read and agreed to the published version of the manuscript.

Shahbaz, & Agarwal. (2025). LiGuard: Interactively and Rapidly Create Point-Cloud and Image Processing Pipelines. Journal of Open Source
Software, 10(110), 6751. https://doi.org/10.21105/joss.06751.

3

https://doi.org/10.21105/joss.06751


Acknowledgements
We thank Dr. Karan Sikka for his great support and guidance throughout the development of
LiGuard.

References
Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

Brown, G., & Montaigu, T. (2012). Laspy. URL: Https://Laspy.readthedocs.io/En/Latest.

Contributors, P. (2024). PDAL point data abstraction library. https://doi.org/10.5281/zenodo.
10884408

Dask Development Team. (2016). Dask: Library for dynamic task scheduling. http://dask.
pydata.org

Goelles, T., Schlager, B., Muckenhuber, S., Haas, S., & Hammer, T. (2021). pointcloudset:
Efficient analysis of large datasets of point clouds recorded over time. Journal of Open
Source Software, 6(65), 3471. https://doi.org/10.21105/joss.03471

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Kim, T.-S., Jung, J., Hong, M., & Jung, Y.-H. (2022). An entropy analysis-based window size
optimization scheme for merging LiDAR data frames. Sensors. https://doi.org/10.3390/
s22239293

Lamprecht, S. (2019). Pyoints: A Python package for point cloud, voxel and raster processing.
Journal of Open Source Software, 4(36), 990. https://doi.org/10.21105/joss.00990

Li, N., Ho, C. P., Xue, J., Lim, L. W., Chen, G., Fu, Y. H., & T. Lee, L. Y. (2022). A progress
review on solid‐state LiDAR and nanophotonics‐based LiDAR sensors. Laser & Photonics
Review. https://doi.org/10.1002/lpor.202100511

Macenski, S., Foote, T., Gerkey, B., Lalancette, C., & Woodall, W. (2022). Robot operating
system 2: Design, architecture, and uses in the wild. Science Robotics, 7 (66), eabm6074.
https://doi.org/10.1126/scirobotics.abm6074

Pyntcloud Development Team. (2021). Pyntcloud. https://pyntcloud.readthedocs.io/en/
latest/introduction.html

Rusu, R. B., & Cousins, S. (2011). 3D is here: Point cloud library (PCL). 2011 IEEE
International Conference on Robotics and Automation, 1–4. https://doi.org/10.1109/
ICRA.2011.5980567

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy
1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Zhao, S., Chen, J., & Shi, Y. (2022). All-solid-state beam steering via integrated optical
phased array technology. Micromachines. https://doi.org/10.3390/mi13060894

Zhou, Q.-Y., Park, J., & Koltun, V. (2018). Open3D: A modern library for 3D data processing.
arXiv:1801.09847.

Shahbaz, & Agarwal. (2025). LiGuard: Interactively and Rapidly Create Point-Cloud and Image Processing Pipelines. Journal of Open Source
Software, 10(110), 6751. https://doi.org/10.21105/joss.06751.

4

https://www.ksikka.com
https://doi.org/10.5281/zenodo.10884408
https://doi.org/10.5281/zenodo.10884408
http://dask.pydata.org
http://dask.pydata.org
https://doi.org/10.21105/joss.03471
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.3390/s22239293
https://doi.org/10.3390/s22239293
https://doi.org/10.21105/joss.00990
https://doi.org/10.1002/lpor.202100511
https://doi.org/10.1126/scirobotics.abm6074
https://pyntcloud.readthedocs.io/en/latest/introduction.html
https://pyntcloud.readthedocs.io/en/latest/introduction.html
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.3390/mi13060894
https://doi.org/10.21105/joss.06751

	Summary
	Statement of Need
	Architecture
	Contributions
	Acknowledgements
	References

