
An Open-Source Tool for Generating Domain-Specific
Accelerators for Resource-Constrained Computing
David T Kerns1 and Tosiron Adegbija1

1 Department of Electrical & Computer Engineering, University of Arizona, Tucson, Arizona, USA
DOI: 10.21105/joss.06825

Software
• Review
• Repository
• Archive

Editor: George K. Thiruvathukal

Reviewers:
• @manuel-g-castro
• @abhishektiwari

Submitted: 01 December 2023
Published: 13 October 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Domain-specific accelerators (DSAs) (Hennessy & Patterson, 2019) are crucial in modern
computer architecture as they enable highly efficient processing for specialized tasks, significantly
improving performance and energy efficiency over general-purpose computing systems. Previous
work (Limaye & Adegbija, 2021) introduced the Superblock (SB) as a new granularity for
designing DSAs. The SB provides a middle ground to the existing extreme granularities of
creating DSAs only from Basic Blocks (BBs) or whole functions. This paper describes an
Open Source Software (OSS) tool called D2 that implements the SB approach and will enable
researchers and developers in the DSA community to easily experiment with this new granularity
towards finding an optimal solution to the DSA definition at hand. Our results show that the
SB should be taken seriously as a candidate for creating DSAs.

Statement of need
The DSA field currently offers few, if any, open-source automation tools. An important
challenge in the design of DSAs is identifying what portions of a set of domain programs
should be implemented in hardware (i.e., accelerated) to maximize the performance and energy
benefits of the DSA. Hennessy & Patterson (2019) even argue for a new domain-specific
language. The SB as a new DSA granularity offers real benefits for efficiently addressing this
challenge. However, manually identifying these SBs can be prohibitively time-consuming and
error-prone. This ground-up re-write as open source from conception hopes to bring the SB
construct to the community at large. The D2 tool provides an exhaustive list of SBs that can
be simulated to determine the optimal size.

Key aspects of D2
This is a follow-on work of Limaye & Adegbija (2021), re-engineered from the ground up, with
special emphasis on making it open source. Additionally, the novel parts are:

• user-controlled constraints
• normalization of BBs
• ranking at the BB level and then mapping the BB ranking onto SBs
• maintaining a link back to the source so that the accelerators can be generated directly

from the C source code rather than the LLVM intermediate representation (IR) files

Kerns, & Adegbija. (2024). An Open-Source Tool for Generating Domain-Specific Accelerators for Resource-Constrained Computing. Journal of
Open Source Software, 9(102), 6825. https://doi.org/10.21105/joss.06825.

1

https://doi.org/10.21105/joss.06825
https://github.com/openjournals/joss-reviews/issues/6825
https://github.com/dtkerns/d2
https://doi.org/10.5281/zenodo.13926674
https://gkt.cs.luc.edu
https://orcid.org/0000-0002-0452-5571
https://github.com/manuel-g-castro
https://github.com/abhishektiwari
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06825


Figure 1: D2 Flow

D2 Overview
D2, as depicted in Figure 1, is a tool that accepts a system's tree of source code. The user
makes minor modifications to the makefiles to generate the required LLVM IR files. D2 then
evaluates the IR files to create a set of metadata files. It then identifies and ranks BBs and
SBs as candidates for FPGA acceleration to produce an optimal set of accelerators for the
system. The identified source lines are then given to a synthesis tool, such as Xilinx Vivato
HLS (Xilinx, 2021) to produce an FPGA accelerator that is integrated back into the source
code. The resulting system runs faster and more efficiently, potentially making the system
even viable on a resource-constrained target.

Target system model
The target is assumed to be a resource-constrained computing system in which the generated
DSA can be integrated. For example, this could be a CPU+FPGA system, wherein the DSA
is implemented on the FPGA, while the unaccelerated portions of the target workloads are
run on the CPU. In this scenario, the FPGA should be addressable from the CPU such that
the identified code that would normally be run by the CPU can be implemented on the FPGA
and offloaded from the CPU without a significant bottleneck. This model is commonly found
in resource-constrained computing devices where power constraints are a major concern, like
human-implanted medical devices (Karageorgos et al., 2020), for example.

D2 implementation details
D2 is a shell script that calls the individual programs written in both Python and C++ that
process the LLVM files generated by the compiler.

The search for superblocks

The control flow graph (CFG) is easily generated from the LLVM IR (LLVM Language Reference
Manual, n.d.-a) files. We use Graphviz (Gansner et al., 1993) .dot file format to represent the
CFG. The heart of the overall D2 package is the sb application (sb.cc) that reads the .dot file

Kerns, & Adegbija. (2024). An Open-Source Tool for Generating Domain-Specific Accelerators for Resource-Constrained Computing. Journal of
Open Source Software, 9(102), 6825. https://doi.org/10.21105/joss.06825.

2

https://doi.org/10.21105/joss.06825


and iteratively identifies every SB in the CFG file. Using the C++ Standard Template Library
(STL) (Plauger et al., 2000), a map is constructed of each BB as a node with a vector of
connected nodes. Once the graph is parsed into the map/tree, it recursively walks the tree
identifying SBs by adding one adjacent node at a time and checking if the “One In, One Out”
condition of an SB is satisfied. Once identified, the SB is added to a vector of SBs that is
output and then ranked in a later stage.

Identification of accelerator candidates

The key to achieving maximum acceleration is to choose areas of the software that are
compute-bound. Further, if an accelerator can be used by multiple applications, the number of
accelerators can be reduced. D2 makes a concerted effort to identify common and frequently
used code segments for acceleration.

Constraints

One piece of metadata that is captured in the CFG file is all functions that the BB calls. These
are labeled as constraints; in that if the BB is to be realized by an accelerator, any function
called by the BB must also be incorporated by the accelerator. Thus, a BB that calls I/O
functions, for example, is not a candidate for acceleration. During the D2 processing of the
source tree, the user is presented the list of constraints or functions called, if any, and given
the option to remove any functions that could be realized by an accelerator.

Normalization of basic blocks

D2 finds common accelerators through a process we call normalization. The normalization
process strips the code of all data, both variables and constants, and replaces them with named
registers. This process is greatly simplified via LLVM's existing Static Single Assignment (SSA)
(LLVM Language Reference Manual, n.d.-b) strategy. Once normalized, BBs that perform
the same set of instructions on a given set of data inputs are identified and consolidated to
minimize redundancy.

Ranking and selection

Ranking is accomplished by keeping metrics on each BB. Often, several SBs are subsets
of a larger SB. While the largest SB often offers the best candidate for acceleration for a
specific workload, a smaller SB that is common to multiple workloads may offer better overall
acceleration to the entire system. D2 makes it easier to iterate through the many possibilities
to find the optimal solution for the target workloads.

Back to the source

D2 tracks the original C source files and lines of code that comprise each basic block. This
allows us to use generic high-level synthesis tools like Xilinx Vivado (Xilinx, 2021) to produce
the hardware description code (e.g., Verilog, SystemVerilog, VHDL) from the C source. This
also simplifies modification of the original source.

Conclusion
We believe there is a future in right-sizing the DSA and that the D2 tool can provide valuable
input to that end. Because there are very few OSS tools geared towards the automation of
DSA identification, we hope that the D2 tool will be utilized and expanded upon within the
computer architecture community to become a valuable resource and additionally, make the
concept of the SB more accessible to the community as a whole.

Kerns, & Adegbija. (2024). An Open-Source Tool for Generating Domain-Specific Accelerators for Resource-Constrained Computing. Journal of
Open Source Software, 9(102), 6825. https://doi.org/10.21105/joss.06825.

3

https://doi.org/10.21105/joss.06825


References
Gansner, E. R., Koutsofios, E., North, S. C., & Vo, K.-P. (1993). A technique for drawing

directed graphs. IEEE Trans. Software Eng., 19(3), 214–230. https://doi.org/10.1109/32.
221135

Hennessy, J., & Patterson, D. (2019). A new golden age for computer architecture. In
Communications of the ACM (Vol. 62, pp. 48–60). ACM. https://doi.org/10.1145/
3282307

Karageorgos, I., Sriram, K., Veselý, J., Wu, M., Powell, M., Borton, D., Manohar, R., &
Bhattacharjee, A. (2020). Hardware-software co-design for brain-computer interfaces.
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA),
391–404. https://doi.org/10.1109/ISCA45697.2020.00041

Limaye, A., & Adegbija, T. (2021). DOSAGE: Generating domain-specific accelerators for
resource-constrained computing. 2021 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), 1–6. https://doi.org/10.1109/ISLPED52811.2021.
9502501

LLVM language reference manual. (n.d.-b). https://llvm.org/docs/LangRef.html#abstract

LLVM language reference manual. (n.d.-a). https://llvm.org/docs/LangRef.html#introduction

Plauger, P. J., Lee, M., Musser, D., & Stepanov, A. A. (2000). C++ standard template library
(1st ed.). Prentice Hall PTR. ISBN: 0134376331

Xilinx, I. (2021). Introduction to FPGA design with vivado high-level synthesis. Xilinx.
https://docs.xilinx.com/v/u/en-US/ug998-vivado-intro-fpga-design-hls

Kerns, & Adegbija. (2024). An Open-Source Tool for Generating Domain-Specific Accelerators for Resource-Constrained Computing. Journal of
Open Source Software, 9(102), 6825. https://doi.org/10.21105/joss.06825.

4

https://doi.org/10.1109/32.221135
https://doi.org/10.1109/32.221135
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://doi.org/10.1109/ISCA45697.2020.00041
https://doi.org/10.1109/ISLPED52811.2021.9502501
https://doi.org/10.1109/ISLPED52811.2021.9502501
https://llvm.org/docs/LangRef.html#abstract
https://llvm.org/docs/LangRef.html#introduction
https://docs.xilinx.com/v/u/en-US/ug998-vivado-intro-fpga-design-hls
https://doi.org/10.21105/joss.06825

	Summary
	Statement of need
	Key aspects of D2
	D2 Overview
	Target system model
	D2 implementation details
	The search for superblocks
	Identification of accelerator candidates
	Constraints
	Normalization of basic blocks
	Ranking and selection
	Back to the source


	Conclusion
	References

