sourmash v4: A multitool to quickly search, compare, and analyze genomic and metagenomic data sets


1 University of California Davis, Davis, CA, United States of America
2 Woods Hole Oceanic Institution, Woods Hole, MA, United States of America
3 Chan-Zuckerberg Biohub, San Francisco, CA, United States of America
4 Pennsylvania State University, University Park, PA, United States of America
5 Max Planck Institute for Evolutionary Biology, Plön, Germany
6 Swedish Defence Research Agency (FOI), Stockholm, Sweden
7 National Bioforensic Analysis Center, Fort Detrick, MD, United States of America
8 Washington University in St Louis, St Louis, MO, United States of America
9 No affiliation

*These authors contributed equally.

DOI: 10.21105/joss.06830

Software
- Review
- Repository
- Archive

Editor: Kevin M. Moerman

Reviewers:
- @Kevin-Mattheus-Moerman

Submitted: 06 May 2024
Published: 28 June 2024

License
Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Summary

sourmash is a command line tool and Python library for sketching collections of DNA, RNA, and amino acid k-mers for biological sequence search, comparison, and analysis (Pierce et al., 2019). sourmash’s FracMinHash sketching supports fast and accurate sequence comparisons between datasets of different sizes (Irber, Brooks, et al., 2022), including taxonomic profiling (Portik et al., 2022), functional profiling (Rahman Hera, Liu, et al., 2023), and petabase-scale sequence search (Irber, Pierce-Ward, et al., 2022). From release 4.x, sourmash is built on top of Rust and provides an experimental Rust interface.

FracMinHash sketching is a lossy compression approach that represents data sets using a “fractional” sketch containing \(1/S\) of the original k-mers. Like other sequence sketching techniques (e.g. MinHash, (Ondov et al., 2015)), FracMinHash provides a lightweight way to store representations of large DNA or RNA sequence collections for comparison and search. Sketches can be used to identify samples, find similar samples, identify data sets with shared sequences, and build phylogenetic trees. FracMinHash sketching supports estimation of overlap, bidirectional containment, and Jaccard similarity between data sets and is accurate even for data sets of very different sizes.

Since sourmash v1 was released in 2016 (Brown & Irber, 2016), sourmash has expanded to support new database types and many more command line functions. In particular, sourmash now has robust support for both Jaccard similarity and Containment calculations, which enables analysis and comparison of data sets of different sizes, including large metagenomic samples. As of v4.4, sourmash can convert these to estimated Average Nucleotide Identity (ANI) values, which can provide improved biological context to sketch comparisons (Rahman Hera, Pierce-Ward, et al., 2023).
Statement of Need

Large collections of genomes, transcriptomes, and raw sequencing data sets are readily available in biology, and the field needs lightweight computational methods for searching and summarizing the content of both public and private collections. sourmash provides a flexible set of programmatic tools for this purpose, together with a robust and well-tested command-line interface. It has been used in over 350 publications (based on citations of Brown & Irber (2016) and Pierce et al. (2019)) and it continues to expand in functionality.

Acknowledgements

This work was funded in part by the Gordon and Betty Moore Foundation’s Data-Driven Discovery Initiative [GBMF4551 to CTB]. It is also funded in part by the National Science Foundation [#2018522 to CTB] and PIG-PARADIGM (Preventing Infection in the Gut of developing Piglets—and thus Antimicrobial Resistance – by disentAngling the interface of Dlet, the host and the Gastrointestinal Microbiome) from the Novo Nordisk Foundation to CTB.

Notice: This manuscript has been authored by BNBI under Contract No. HSHQDC-15-C-00064 with the DHS. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the USG retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for USG purposes. Views and conclusions contained herein are those of the authors and should not be interpreted to represent policies, expressed or implied, of the DHS.

References


