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Summary
The Interactive Corpus Analysis Tool (ICAT) is a Python library for creating dashboards to
explore textual datasets and build simple binary classification models to help filter through
them and focus on entries of interest. This tool uses a form of interactive machine learning
(IML), a paradigm of “machine teaching” (Simard et al., 2017) that sits at the intersection
of the fields of human computer interaction (HCI), visual analytics, and machine learning.
The intent of ICAT is to allow subject matter experts (SME) with limited to no experience in
machine learning to benefit from an iterative human-in-the-loop (HITL) approach to building
their own model without needing to understand the details of the underlying algorithm. This
interactivity is achieved by allowing the user to create features, label data points, and visually
manipulate a representation of the features to manually cluster and investigate data, while a
model is trained on the fly based on these actions. ICAT is built on top of the Panel (Holoviz,
2018) library, using a combination of Vega, a custom IPyWidget using D3, and ipyvuetify, and
is intended to be used inside of a Jupyter environment.

Statement of Need
Machine teaching promises to democratize machine learning algorithms and grant non-machine-
learning experts the ability to train, manipulate, and work with models themselves (Simard et
al., 2017). Traditionally, the process for an SME to obtain a model that aids in their data
analysis is a time consuming iterative loop: they must first communicate their problem space
and data to a machine learning expert, who experiments and trains a model for the SME,
who then tests it and finds any issues or insufficiently learned concepts, which must then
be communicated back to the ML expert, and the iterative loop continues as such. Ideally,
an effective HITL training process involves the SME more directly in the training process,
dramatically speeding up this iteration loop and benefiting from the SME’s implicit knowledge
and experience. IML seeks to provide this process through mechanisms such as feature selection
(interactive featuring) and model steering (interactive labeling) (Dudley & Kristensson, 2018).

This is a challenging space for a number of reasons. The efficacy of an IML system heavily
revolves around the design of the interface itself, in addition to the underlying machine learning
models and the many considerations they entail. Thus, incorporating effective user experience
design principles and understanding the mental models of the users as they explore and use
the interface is crucial. Both quantitative and qualitative metrics must include the human
element, so any research seeking to demonstrate a measured value-add or efficacy of an IML
interface must incorporate user studies (Lai et al., 2023). A positive user experience additionally
constrains algorithmic design in terms of speed and efficiency–an underlying model that takes
minutes to train is frustrating to interact with (Fails & Olsen, 2003). Care must be taken not
to treat the user like a mechanical turk or mindless oracle for the model to endlessly query
(Amershi et al., 2014; Cakmak et al., 2010).

Despite these challenges, there is tremendous potential for IML to empower SMEs and allow
them to benefit from the value of machine learning in their work. For the field to grow and
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realize this potential, a great deal more research and work are required. Our work draws heavily
on the IML interface concepts proposed by Suh et al. (2019), and as of this writing there is
no other open source package implementing their visuals or overall interface. ICAT seeks to
fill this gap to allow other researchers to explore, build on, and compare against the concepts
discussed below to further the state of the field.

Interface Concepts
The ICAT workflow trains a simple binary classification model to separate “uninteresting” from
“interesting” entries in an initially unlabeled dataset. “Interesting” here is intentionally vague
to refer to whatever classification signal a user is implicitly or explicitly attempting to extract.
The primary use case for this is for ICAT to help filter a large collection of text objects to some
smaller target subset of interest that is easier to manually review.

ICAT implements both interactive featuring and interactive labeling. Interactive featuring
allows the user to create or influence the feature columns that the underlying model uses for
training and predicting. In ICAT this is done through “concept anchors,” or functions that
return some value, nominally between 0 and 1, to represent a strength or “pull” on a provided
input. An example anchor type included with ICAT is a dictionary or keyword anchor, where
the feature value is a bag of words or count of the number of occurences of each keyword the
user provides to that anchor. Interactive labeling is done by allowing the user to manually
specify or change a label (uninteresting or interesting) for any text entry. All labeled rows are
used as the training dataset for the underlying model. Once the model is “seeded,” or given
some minimum number of labels to train on, it begins to predict on the full dataset, and the
visualizations in the dashboard are colored to reflect the interesting/uninteresting prediction
for each entry.

Anchors are visualized with the AnchorViz ring (Suh et al., 2019), which are shown below in
Figure 1(a). The visual representation of anchors are draggable points around the circumference
of the ring, with the entries from a sample of the data rendered as the smaller points inside.
Anchors pull points toward them based on the strength of influence or the magnitude of the
feature value on each point. As the user drags the anchors around, the associated points
then similarly move according to these varying attraction strengths, and this helps visually
determine the overlap between anchors and which points are or are not represented well by
the current feature set. This ability to manually position the anchors and their correpsonding
points allows for various strategies for manually clustering the data, such as using anchors to
pull away any distractors or known incorrect keywords from the interesting set, and so on.
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Figure 1: An example of a rendered dashboard from ICAT. Throughout the dashboard, blue points and
text indicate uninteresting, orange indicate interesting. (a) The AnchorViz ring. (b) The data manager,
explorer, and labeling tool. (c) The anchor list/feature editing section.

The dashboard also includes a data manager, shown in Figure 1(b), with tables containing
various subsets of the data to make it easier to scroll through and explore the text. The
data tabs have five filters that can be applied to the data. These include showing only the
current sample of points in the AnchorViz display, showing all points that have been labeled,
showing all points the model has predicted are interesting, or showing the result of the user
lasso-selecting arbitrary points in the visualization. The tables also include a set of actions per
row, allowing the user to apply labels to the points, create example anchors (by default adding
a new TFIDFAnchor with the chosen row as the similarity target), and add them to the current
sample if they are not already included.

Below the AnchorViz ring is the anchor list, shown in Figure 1(c). The anchor list contains all
of the current anchors, statistics about the number of points they cover and their classification
breakdown, and the associated controls for modifying their parameters. Every anchor type can
have a customized set of controls to display when a corresponding anchor row is expanded in
the anchor list. This can consist of any combination of ipyvuetify (Widgetti, 2019) elements
stored in the .widget instance of the anchor. An anchor type is effectively a wrapper around a
function that computes a feature value, and ICAT can support dynamically adding new anchor
types to the interface for any class inheriting from icat.anchors.Anchor.

As discussed earlier, an important concept for a tool that trains a model on the fly based on
user interaction is to respond and train quickly (Fails & Olsen, 2003). Interactive featuring
means that a single user action could change the feature values for the entire training dataset,
which requires retraining the underlying model from scratch. Since all features and labels are
user provided, the overall volume and necessary complexity is relatively low, and by default
ICAT uses scikit-learn’s (Pedregosa et al., 2011) logistic regression algorithm. This results in a
training time of a few seconds on most modern laptop hardware with datasets smaller than
50,000 entries when using the default anchor types that come with ICAT.
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