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Summary
We study irreversible evolutionary processes with a general energetic notion of stability. With
this contribution, we release three nonlinear variational solvers as modular components (based
on FEniCSx/dolfinx) that address three mathematical optimisation problems. They are general
enough to apply, in principle, to evolutionary systems with instabilities, jumps, and emergence
of patterns. Systems with these qualities are commonplace in diverse arenas spanning from
quantum to continuum mechanics, economy, social sciences, and ecology. Our motivation
proceeds from fracture mechanics, with the ultimate goal of deploying a transparent numerical
platform for scientific validation and prediction of large scale natural fracture phenomena. Our
solvers are used to compute one solution to a problem encoded in a system of two inequalities:
one (pointwise almost-everywhere) constraint of irreversibility and one global energy statement.

Statement of need
Quasi-static evolution problems arising in fracture are strongly nonlinear (Marigo, 2023),
(Bourdin et al., 2008). They can admit multiple solutions, or none (León Baldelli & Maurini,
2021). This demands both a functional theoretical framework and practical computational
tools for real case scenarios. Due to the lack of uniqueness of solutions, it is fundamental to
leverage the full variational structure of the problem and investigate solutions up to second
order, to detect nucleation of stable modes and transitions of unstable states. The stability of
a multiscale system along its nontrivial evolutionary paths in phase space is a key property
that is difficult to check: numerically, for real case scenarios with several length scales involved,
and analytically, in the infinite-dimensional setting. Despite the concept of unilateral stability
is classical in the variational theory of irreversible systems (Mielke & Roubíček, 2015) and the
mechanics of fracture (Francfort & Marigo, 1998) (see also Nguyen (2000)), few studies have
explored second-order criteria for crack nucleation and evolution. Although sporadic, these
studies are significant, including (Pham et al., 2011), (Pham & Marigo, 2013), (Sicsic et al.,
2014), (León Baldelli & Maurini, 2021), and (Zolesi & Maurini, 2024). The current literature
in computational fracture mechanics predominantly focuses on unilateral first-order criteria,
systematically neglecting the exploration of higher-order information for critical points. To
the best of our knowledge, no general numerical tools are available to address second-order
criteria in evolutionary nonlinear irreversible systems and fracture mechanics.

To fill this gap, our nonlinear solvers offer a flexible toolkit for advanced stability analysis of
systems which evolve with constraints.
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Functionality
We attack the following abstract problem which encodes a selection principle:

𝑃(0) ∶ Given 𝑇 > 0, find an irreversible-constrained evolution 𝑦𝑡

𝑦𝑡 ∶ 𝑡 ∈ [0, 𝑇 ] ↦ 𝑋𝑡 such that

[Unilateral Stability] 𝐸(𝑦𝑡) ≤ 𝐸(𝑦𝑡 + 𝑧), ∀𝑧 ∈ 𝑉0 ×𝐾+
0 [1]

Above, 𝑇 defines a horizon of events. The system is represented by its total energy 𝐸 and 𝑋𝑡 is
the time-dependent space of admissible states. A generic element of 𝑋𝑡 contains a macroscopic
field that can be externally driven (or controlled, e.g. via boundary conditions) and an internal
field (akin to an internal degree of order). In the applications of fracture, the kinematic variable
is a vector-valued displacement 𝑢(𝑥) and the degree of order 𝛼(𝑥) controls the softening of
the material. Irreversibility applies to the internal variable, hence an irreversible-constrained
evolution is a mapping parametrised by 𝑡 such that 𝛼𝑡(𝑥) is non-decreasing with respect to
𝑡. The kinematic variable is subject to bilateral variations belonging to a linear subset of a
Sobolev vector space 𝑉0, whereas the test space for the internal order parameter 𝐾+

0 only
contains positive fields owing to the irreversibility constraint. The main difficulties are to
correctly enforce unilateral constraints and to account for the changing nature of the space of
variations.

HybridSolver (1) BifurcationSolver, (2) and StabilitySolver (3) address the solution of
[1] in three stages:

1. A constrained variational inequality; that is first order necessary conditions for unilateral
equilibrium.

2. A singular variational eigen-problem in a vector space; that is a bifurcation problem
indicating uniqueness (or lack thereof) of the evolution path.

3. A constrained eigen-inequality in a convex cone; originating from a second order eigenvalue
problem indicating stabilty of the system (or lack thereof).

These numerical tools can be used to study general evolutionary problems formulated in terms
of fully nonlinear functional operators in spaces of high or infinite dimension. In this context,
systems can have surprising and complicated behaviours such as symmetry breaking bifurcations,
endogenous pattern formation, localisations, and separation of scales. Our solvers can be
extended or adapted to a variety of systems described by an energetic principle formulated as
in [1].

Software
Our solvers are written in Python and are built on DOLFINx, an expressive and performant
parallel distributed computing environment for solving partial differential equations using the
finite element method (Baratta et al., 2023). It enables us wrapping high-level functional
mathematical constructs with full flexibility and control of the underlying linear algebra backend.
We use PETSc (Balay et al., 2023), petsc4py (Dalcin et al., 2011), SLEPc.EPS (Hernandez et
al., 2005), and dolfiny (Habera & Zilian, 2024) for parallel scalability.

Our solver’s API receives an abstract energy functional, a user-friendly description of the state
of the system as a dictionary {"u": u, "alpha": alpha}, where the first element is associated
to the reversible field and the second to the irreversible component, the associated constraints
on the latter, and the solver’s parameters (see an example in the Addendum). Solvers can be
instantiated calling
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solver = {Hybrid,Bifurcation,Stability}Solver(

E, # An energy (dolfinx.fem.form)

state, # A dictionary of fields describing the system

bcs, # A list of boundary conditions

[bounds], # A list of bounds (lower and upper) for the order parameter

parameters # A dictionary of numerical parameters

)

where [bounds]=[lower, upper] are required for the HybridSolver. Calling solver.solve(<args>)

triggers the solution of the corresponding variational problem. Here, <args> depend on the
solver (see the documentation for details).

HybridSolver solves a (first order) constrained nonlinear variational inequality, implementing
a two-phase hybrid strategy which is ad hoc for energy models typical of applications in
damage and fracture mechanics. The first phase (iterative alternate minimisation) is based on
a de-facto industry standard, conceived to exploit the (partial, directional) convexity of the
underlying mechanical models (Bourdin et al., 2000). Once an approximate-solution enters
the attraction set around a critical point, the solver switches to perform a fully nonlinear step
solving a block-matrix problem via Newton’s method. This guarantees a precise estimation of
the convergence of the first-order nonlinear problem based on the norm of the (constrained)
residual.

BifurcationSolver is a variational eigenvalue solver which uses SLEPc.EPS to explore the
lower part of the spectrum of the Hessian of the energy, automatically computed performing
two directional derivatives. Constraints are accounted for by projecting the full Hessian onto
the subspace of inactive constraints (Jorge Nocedal, 1999). The relevance of this approach
is typical of systems with threshold laws. Thus, the solve method returns a boolean value
indicating whether the restricted Hessian is positive definite. Internally, the solver stores the
lower part of the operators’ spectrum as an array.

StabilitySolver solves a constrained variational eigenvalue inequality in a convex cone, to
check whether the (restricted) nonlinear Hessian operator is positive therein. Starting from an
initial guess 𝑧∗0, it iteratively computes (eigenvalue, eigenvector) pairs (𝜆𝑘, 𝑧𝑘) converging to a
limit (𝜆∗, 𝑧∗) (as 𝑘 → ∞), by implementing a simple projection and scaling algorithm (Moreau,
1962), (Pinto da Costa & Seeger, 2010). The positivity of 𝜆∗ (the smallest eigenvalue) allows
to conclude on the stability of the current state (or lack thereof), hence effectively solving
P(0). Notice that, if the current state is unstable (𝜆∗ < 0), the minimal eigenmode indicates
the direction of energy decrease.

We dedicate a separate contribution to illustrate how the three solvers are algorithmically
combined to solve problem P(0) in the case of fracture. Figure 1 illustrates the numerical
convergence properties of the StabilitySolver in a 1d verification test.

In a supplementary document, we perform a thorough verification of the code through
parametric benchmark for investigating the stability of a 1D mechanical system, providing
analytical expressions used for comparison with numerical solutions, as well as all parameters
(numerical and physical) employed in the calculations. Accuracy and reliability of the solvers
is shown by the close agreement between numerical and analytic solutions in a benchmark
minimisation of (a constrained) Rayleigh ratio, a key problem for applications in structural
mechanics and stability analysis.
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Figure 1: Rate of convergence for StabilitySolver in 1d (cf. benchmark problem in the Addendum).
Targets are the eigenvalue lim𝑘 𝜆𝑘 =∶ 𝜆∗ (pink) and the associated eigen-vector 𝑥∗ (error curve in blue).
Note that the residual vector (green) for the cone problem need not be zero at a solution.
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