The Journal of Open Source Software

DOI: 10.21105/joss.06902

Software
= Review &7
= Repository @
= Archive &0

Editor: Olexandr Konovalov 7
Reviewers:
= @YehorYudinlPP

= @fruzsinaagocs

Submitted: 06 February 2024
Published: 30 October 2025

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

PathFinder: A Matlab/Octave package for oscillatory
integration
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Summary

Oscillatory integrals arise in models of a wide range of physical applications, from acoustics
to quantum mechanics. PathFinder is a Matlab/Octave package for efficient evaluation of
oscillatory integrals of the form

b
I= / £(2) explivg(2)) dz, (1)

where the endpoints a and b can be complex-valued, even infinite; w > 0 determines the
angular frequency; f(z) is the amplitude function, a non-oscillatory entire function; g(z) is
the phase function, which must be a polynomial. The basic syntax is simple:

I = PathFinder(a, b, f, gCoeffs, omega, N);

Here, f is a function handle representing f(z), gCoeffs is a vector of coefficients of g(z), omega
is the frequency parameter w, and N is a parameter that controls the degree of approximation.

PathFinder is the first black-box software that can evaluate (1) accurately, robustly, and
efficiently for any w > 0. It will be useful across many scientific disciplines, for problems that
were previously too computationally expensive or too mathematically challenging to solve.

Statement of need

Based on the method of Numerical Steepest Descent (Huybrechs & Vandewalle, 2006),
PathFinder is an implementation of the algorithm described in Gibbs et al. (2024), where an
earlier version of the code was used to produce numerical experiments. Since these experiments,
much of the code has been rewritten in C, interfacing with Matlab/Octave via MEX (Matlab
executable) functions. These are easily compiled using a single script.

Ease of use

Standard quadrature rules (midpoint rule, Gauss quadrature, etc.) are easy to use, and many
open-source implementations are available. However, when applied to (1), such methods
become prohibitively inefficient for large w.

On the other hand, several methods exist for the efficient evaluation of oscillatory (large w)
integrals such as (1); a thorough review is given in Deafio et al. (2018). However, applying
these methods often requires an expert understanding of the process and a detailed analysis of
the integral, making such methods inaccessible to non-mathematicians. Even with the necessary
mathematical understanding, models may require hundreds or thousands of oscillatory integrals
to be evaluated, making detailed analysis of each integral highly challenging or impossible.
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Despite being based on complex mathematics, PathFinder can be easily used by non-
mathematicians. The user must simply understand the definitions of the components of

(1).

Use in academic research

In many physical models, interesting physical phenomena occur in the presence of coalescing
saddle points (see, e.g., Gibbs et al. (2024) for a definition). Examples include chemical
reactions, rainbows, twinkling starlight, ultrasound pulses, and focusing of sunlight by rippling
water (NIST Digital Library of Mathematical Functions, 2023, sec. 36.14).

Coalescing saddle points can cause steepest descent methods to break down, even in simple
cases where g(z) is a cubic polynomial (Huybrechs et al., 2019). By design, PathFinder is
robust for any number of coalescing saddle points. This is demonstrated in Figures 1 and 2,
where PathFinder has been used to model well-known optics problems with coalescing saddle
points. Specifically these are the Cusp Catastrophe

/OO exp(i(z? + 2522 + 2,2)) dz (2)

and the Swallowtail -

exp(i(2° + 2323 + 1522 + 7,2)) dz
—0o0
respectively. More information about the physical significance of these integrals can be found
in NIST Digital Library of Mathematical Functions (2023), Section 36.14. In these plots, each
point (z1,Z4) requires a separate evaluation of (1) and thus a separate call to PathFinder.
For example, for (2), the following code was used for each (z, z,):

PathFinder( pi, 0,
[1,
[1 0 x2 x1 0]1,...
17
10,
“infcontour', [true truel
);

Note the optional input specified by ' infcontour' and the vector [true true], which tells
PathFinder that both endpoints of the integration contour are unbounded. The first two
arguments of PathFinder, which describe the endpoints of the contour, are then interpreted
as angles describing complex valleys: exp(im)oo = —oo and exp(i0)oo = oo, our limits of
integration. Recall that in the standard syntax, the first two inputs are interpreted as finite
endpoints of the contour.
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Amplitude of Cusp/Pearcey canonical catastrophe integral

2

2.5

. 1.5

§ »
4 1

0.5

-10
0

[

-10 -5 0 5 1
x1

Figure 1: PathFinder approximation to Pearcey/Cusp Catastrophe integrals (Pearcey, 1946), which
contain coalescing saddle points.
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Figure 2: PathFinder approximation to Swallowtail Catastrophe integrals (Arnol’d, 1981), which contain
many coalescing saddle points.

In Hewett et al. (2019) a new technique was described for the construction of integral solutions
to the Parabolic Wave Equation, typically with coalescing saddle points. Plots of some solutions
were provided using cuspint (described below) in the cases that were “not too difficult”, but
others were excluded, for example, Aj, of equation (32) therein. This omission can now be
easily produced using PathFinder, as shown in Figure 3.
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Figure 3: PathFinder approximation to | A, (x4, Z,)], (32) of Hewett et al. (2019).
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Figure 4: PathFinder approximation of a wavefield with a caustic near an inflection point, wavenumber
40.

The ideas of Hewett et al. (2019) were combined with PathFinder in Ockendon et al. (2024)
and applied to the famous (unsolved) inflection point problem of Popov (1979). Via a simple
change of variables, these solutions to the Parabolic Wave Equation could be transformed
into meaningful solutions of the Helmholtz equation. Here PathFinder was used to visualise
a wavefield with caustic behaviour close to a curve with an inflection point (as in Figure 4)
and provided numerical validation of the asymptotic approximations therein. In Figure 3, the
integral is
100
/ zexp(i(—xy2? — 11242 + 225/5)) dz; (3)
£i97/10 5

this was subsequently transformed to a solution to the Helmholtz equation, in Figure 4. The
integrals (3) are evaluated using the following code:
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PathFinder( 9\pi/10, 1/2,

a(z) z,

[2/5 -x_1/2 0 -x_2 0 0],...
1,

10,

"infcontour', [true truel

)s

Note again the optional input 'infcontour' which specifies that the integration contour is
unbounded.

Comparison with other software

To the best knowledge of the author, there are only a handful of other software packages that
can efficiently evaluate oscillatory integrals. We now compare these to PathFinder.

Mathematica’s NIntegrate

This is a built-in function of Wolfram Mathematica (Wolfram, 2024), based on the Levin
method (see, e.g., (Deafio et al., 2018, sec. 3.3)).

An advantage of Mathematica's NIntegrate is that the oscillatory component does not
always need to be factored explicitly, and it can evaluate some oscillatory integrals where
g is non-polynomial.

Based on experiments (Gibbs et al., 2024, sec. 5.3), NIntegrate does not appear to
have a frequency-independent cost for general polynomial phase functions.

NIntegrate does not work in general for an unbounded contour with complex endpoints.
NIntegrate is not open source; the code cannot be seen or modified, and one must
acquire a license to use it.

cuspint

This package is written in Fortran, based on the paper Kirk et al. (2000).

The cuspint package is somewhat similar to PathFinder in that it is also based on
steepest descent contour deformation.

The problem class is restricted to (1) when (a,b) = R. Therefore, it may be used to
model the catastrophe integrals of Figures 1 and 2, but not those of Figure 3 and 4.
cuspint can experience “violent” exponential growth (Kirk et al., 2000, sec. 2), which
can lead to inaccurate results. This is because, unlike PathFinder, it does not attempt
a highly accurate approximation of the steepest descent contours.

Picard_Lefschetz_Integrator

This C++ package is also based on steepest descent. The key difference is the algorithm
gradually deforms the contour, details are given in Feldbrugge et al. (2023).

The scope of problems to which it is applicable appears broad, the full extent is unclear
based on existing documentation. Like PathFinder, it can be applied to catastrophe
integrals. There are examples where it is also applied to singular oscillatory integrals.
To the best understanding of the PathFinder developers, it appears that prior user exper-
tise in the underlying mathematics is required to use Picard_Lefschetz_Integrator,
various parameters must be tweaked to obtain accurate results, integrals must be manu-
ally truncated, etc. This is in contrast to PathFinder, which aims to be fully automated
where possible, requiring minimal user input.

OscillatoryIntegralsODE. jl

This package is based on the Levin method (see, e.g., Deafio et al. (2018), Section 3.3).

Gibbs. (2025). PathFinder: A Matlab/Octave package for oscillatory integration. Journal of Open Source Software, 10(114), 6902. https: 5

//doi.org/10.21105/joss.06902.


https://doi.org/10.21105/joss.06902
https://doi.org/10.21105/joss.06902

The Journal of Open Source Software

= This package can evaluate oscillatory integrals of the form

b
I:/ f(z)S(wz)dz, (4)

when S is a Bessel function (NIST Digital Library of Mathematical Functions, 2023,
sec. 10.2), a Spherical Bessel function (NIST Digital Library of Mathematical Functions,
2023, sec. 10.47), or the Fourier oscillator S(wz) = e“*. The latter is clearly equivalent
to (1) when g is a monomial, thus OscillatoryIntegralsODE.jl excludes the general
case of PathFinder, where the high frequency oscillator has a polynomial phase function.

In summary, we believe that PathFinder is the only existing software package that can be
applied in general to (1), without prior user expertise in the underlying mathematics.
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