
lintsampler: Easy random sampling via linear
interpolation
Aneesh P. Naik 1¶ and Michael S. Petersen 1

1 Institute for Astronomy, University of Edinburgh, UK ¶ Corresponding author
DOI: 10.21105/joss.06906

Software
• Review
• Repository
• Archive

Editor: Mehmet Hakan Satman

Reviewers:
• @matt-graham
• @vankesteren

Submitted: 14 June 2024
Published: 01 October 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
lintsampler provides a Python implementation of a technique we term ‘linear interpolant
sampling’: an algorithm to efficiently draw pseudo-random samples from an arbitrary probability
density function (PDF). First, the PDF is evaluated on a grid-like structure. Then, it is assumed
that the PDF can be approximated between grid vertices by the (multidimensional) linear
interpolant. With this assumption, random samples can be efficiently drawn via inverse
transform sampling (Devroye, 1986).

lintsampler is primarily written with numpy (Harris et al., 2020), drawing some additional
functionality from scipy (Virtanen et al., 2020). Under the most basic usage of lintsampler,
the user provides a Python function defining the target PDF and some parameters describing a
grid-like structure to the LintSampler class, and is then able to draw samples via the sample

method. Additionally, there is functionality for the user to set the random seed, employ quasi-
Monte Carlo sampling, or sample within a premade grid (DensityGrid) or tree (DensityTree)
structure.

Statement of need
Below is a (non-exhaustive) list of ‘use cases’, i.e., situations where a user might find
lintsampler (and/or the the linear interpolant sampling algorithm underpinning it) to be
preferable over random sampling techniques such as importance sampling, rejection sampling
or Markov chain Monte Carlo (MCMC). MCMC in particular is a powerful class of methods
with many excellent Python implementations (Coullon & Nemeth, 2022; Foreman-Mackey
et al., 2019; Marignier, 2023; Patil et al., 2010). In certain use cases as described below,
lintsampler can offer more convenient and/or more efficient sampling compared with these
various techniques.

We’ll assume that the target PDF the user wishes to sample from does not have its own exact
sampling algorithm (such as the Box-Muller transform for a Gaussian PDF). The power of
lintsampler lies in its applicability to arbitrary PDFs for which tailor-made sampling algorithms
are not available.

Use Cases
1. Expensive PDF

If the PDF being sampled from has high computatational overhead to evaluate (referred to
as computationally ‘expensive’) and a large number of samples is desired, then lintsampler

might be the most cost-effective option. This is because lintsampler does not evaluate the
PDF for each sample (as would be the case for other random sampling techniques), but on the
nodes of the user-chosen grid. Particularly in a low-dimensional setting where the grid does not

Naik, & Petersen. (2024). lintsampler: Easy random sampling via linear interpolation. Journal of Open Source Software, 9(102), 6906.
https://doi.org/10.21105/joss.06906.

1

https://orcid.org/0000-0001-6841-1496
https://orcid.org/0000-0003-1517-3935
https://doi.org/10.21105/joss.06906
https://github.com/openjournals/joss-reviews/issues/6906
https://github.com/aneeshnaik/lintsampler
https://doi.org/10.5281/zenodo.13846862
https://avesis.istanbul.edu.tr/mhsatman/topics
https://orcid.org/0000-0002-9402-1982
https://github.com/matt-graham
https://github.com/vankesteren
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06906


have too many nodes, this can mean far fewer PDF evaluations. This point is demonstrated in
the first example notebook in the lintsampler docs.1

2. Multimodal PDF

If the target PDF has a highly complex structure with multiple, well-separated modes, then
lintsampler might be the easiest option (in terms of user configuration). In such scenarios,
MCMC might struggle unless the walkers are carefully preconfigured to start near the modes.
Similarly, rejection sampling or importance sampling would be highly suboptimal unless the
proposal distribution is carefully chosen to match the structure of the target PDF. With
lintsampler, the user needs only to ensure that the resolution of their chosen grid is sufficient
to resolve the PDF structure, and so the setup remains straightforward. This is demonstrated
in the second example notebook in the lintsampler docs.2

3. PDF with large dynamic range

If the target PDF has a very large dynamic range, then the DensityTree object provided by
lintsampler might be an effective solution. Here, the PDF is evaluated not on a fixed grid,
but on the leaves of a tree. The tree is refined such that regions of concentrated probability
are more finely resolved, based on accuracy criteria. Such an example is shown in the third
example notebook in the lintsampler docs.

4. Noise needs to be minimised

In Quasi-Monte Carlo (QMC) sampling, one purposefully generates more ‘balanced’ (and
thus less random) draws from a target PDF, so that sampling noise decreases faster than
𝒪(𝑁−1/2). lintsampler allows easy QMC sampling with arbitrary PDFs. We are not aware
of such capabilities with any other package. We give an example of using lintsampler for
QMC in the fourth example notebook in the lintsampler docs.

‘Real World’ Example
Any one of the four use cases above would serve by itself as a sufficient case for choosing
lintsampler, but here we give an example of a real-world scenario that combines all of the
use cases. It is drawn from our own primary research interests in computational astrophysics.

Much of computational astrophysics consists of large-scale high performance computational
simulations of gravitating systems. For example, simulations of planets evolving and interacting
within a solar system, simulations of stars interacting within a galaxy, or vast cosmological
simulations in which a whole universe is grown in silico.

There exists a myriad of codes used to run these simulations, each using different algorithms
to solve the governing equations. One class of simulation code that has gained much attention
in recent years is the class of code employing basis function expansions (Petersen et al., 2022;
Vasiliev, 2019). In these codes, the matter density at any point in space is represented by a
sum over basis functions (not unlike a Fourier series), with the coefficients in the sum changing
over space and time. As such, the matter comprising the system is represented everywhere
as a smooth, continous fluid, but for many applications and/or downstream analyses of the
simulated system, one needs to instead represent the system as a set of discrete particles.
These particles can be obtained by drawing samples from the continuous density field.

1Similarly, there might be situations where the user is not so concerned about strict statistical representative-
ness but wants to generate a huge number of samples from a target PDF with the least possible computational cost
(such as e.g., generating realistic point cloud distributions in video game graphics). They can use lintsampler

with a coarse grid (so minimal PDF evaluations), then sample() to their heart’s content.
2It is worth noting that in these kinds of complex, multimodal problems, a single fixed grid might not be

the most cost-effective sampling domain. For this reason, lintsampler also provides simple functionality for
sampling over multiple disconnected grids.

Naik, & Petersen. (2024). lintsampler: Easy random sampling via linear interpolation. Journal of Open Source Software, 9(102), 6906.
https://doi.org/10.21105/joss.06906.

2

https://lintsampler.readthedocs.io/en/latest/example_notebooks/1_gmm.html
https://lintsampler.readthedocs.io/en/latest/example_notebooks/2_doughnuts.html
https://lintsampler.readthedocs.io/en/latest/example_notebooks/3_dark_matter.html
https://lintsampler.readthedocs.io/en/latest/example_notebooks/3_dark_matter.html
https://lintsampler.readthedocs.io/en/latest/example_notebooks/4_qmc.html
https://doi.org/10.21105/joss.06906


This is a scenario that satisfies all four of the use cases list above. To explain further:

• The PDF we are sampling from (i.e., the basis expansion representation of the matter
density field) can be expensive to evaluate if a large number of terms are included in the
sum.

• The PDF can be highly multimodal when the system we are simulating comprises many
distinct gravitating substructures, such as stellar clusters.

• The PDF can have a large dynamic range. Astrophysical structures such as galaxies and
dark matter ‘haloes’ often have power-law density profiles, such as the Navarro-Frenk-
White profile (Navarro et al., 1997). Further complicating the issue is that a typical dark
matter halo will host several ‘subhaloes’, which in turn might host ‘subsubhaloes’, and
so on. In short, a range of spatial scales needs to be resolved.

• If the particle set being sampled is to be used for further simulation, it can be helpful to
draw as ‘noiseless’ a sample as possible for reasons of numerical stability.

For these reasons, this kind of astrophysical simulation code provides an excellent example
of a ‘real world’ application for lintsampler. Here, one would cover the simulation domain
with a DensityTree instance (or several instances, one for each primary structure), call the
refine method to better resolve the high-density regions, then feed the tree to a LintSampler

instance and call sample to generate particles. The qmc flag can be passed to the sampler in
order to employ Quasi-Monte Carlo sampling.

Caveats
In all use cases listed above, it is assumed that the dimension of the problem is not too high.
lintsampler works by evaluating a given PDF on the nodes of a grid (or grid-like structure,
such as a tree), so the number of evaluations (and memory occupancy) grows exponentially
with the number of dimensions. As a consequence, many of the efficiency arguments given for
lintsampler below don’t apply to higher dimensional problems. We probably wouldn’t use
lintsampler in more than 6 dimensions, but there is no hard limit here: the question of how
many dimensions is too many will depend on the problem at hand.

Usage
lintsampler is designed with an interface that makes sampling from an input PDF straight-
forward. For example, if you have PDF with multiple separated peaks:

import numpy as np

from scipy.stats import norm

def gmm_pdf(x):

mu = np.array([-3.0, 0.5, 2.5])

sig = np.array([1.0, 0.25, 0.75])

w = np.array([0.4, 0.25, 0.35])

return np.sum([w[i] * norm.pdf(x, mu[i], sig[i]) for i in range(3)], axis=0)

lintsampler can efficiently draw samples from it on some defined interval:

from lintsampler import LintSampler

grid = np.linspace(-7,7,100)

samples = LintSampler(grid,pdf=gmm_pdf).sample(N=10000)

samples is then an array of 10000 samples drawn from the PDF. Apart from defining the PDF,
lintsampler enables creating discrete samples from a continuous PDF in a small handful of
lines.

Naik, & Petersen. (2024). lintsampler: Easy random sampling via linear interpolation. Journal of Open Source Software, 9(102), 6906.
https://doi.org/10.21105/joss.06906.

3

https://doi.org/10.21105/joss.06906


Features
Although lintsampler is written in pure Python, making the code highly readable, the
methods make extensive use of numpy functionality to provide rapid sampling. After the
structure spanning the domain has been constructed, sampling proceeds with computational
effort scaling linearly with number of sample points.

We provide two methods to define the domain, both optimised with numpy functionality for
efficient construction. The DensityGrid class takes highly flexible inputs for defining a grid.
In particular, the grid need not be evenly spaced (or even continuous) in any dimension; the
user can preferentially place grid elements near high-density regions. The DensityTree class
takes error tolerance parameters and constructs an adaptive structure to achieve the specified
tolerance. We also provide a base class (DensityStructure) such that the user could extend
the methods for spanning the domain.

Documentation for lintsampler, including example notebooks demonstrating a range of
problems, is available via a readthedocs page. The documentation also has an extensive
explanation of the interfaces, including optimisation parameters for increasing the efficiency in
sampling.

Acknowledgements
We would like to thank Sergey Koposov for useful discussions. APN acknowledges funding
support from an Early Career Fellowship from the Leverhulme Trust. MSP acknowledges
funding support from a UKRI Stephen Hawking Fellowship.

References
Coullon, J., & Nemeth, C. (2022). SGMCMCJax: A lightweight JAX library for stochastic

gradient Markov Chain Monte Carlo algorithms. Journal of Open Source Software, 7 (72),
4113. https://doi.org/10.21105/joss.04113

Devroye, L. (1986). Non-uniform random variate generation. Springer-Verlag. https://doi.
org/10.1007/978-1-4613-8643-8

Foreman-Mackey, D., Farr, W., Sinha, M., Archibald, A., Hogg, D., Sanders, J., Zuntz, J.,
Williams, P., Nelson, A., de Val-Borro, M., Erhardt, T., Pashchenko, I., & Pla, O. (2019).
emcee v3: A Python ensemble sampling toolkit for affine-invariant MCMC. The Journal of
Open Source Software, 4(43), 1864. https://doi.org/10.21105/joss.01864

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Marignier, A. (2023). PxMCMC: A Python package for proximal Markov Chain Monte Carlo.
The Journal of Open Source Software, 8(87), 5582. https://doi.org/10.21105/joss.05582

Navarro, J. F., Frenk, C. S., & White, S. D. M. (1997). A Universal Density Profile from
Hierarchical Clustering. 490(2), 493–508. https://doi.org/10.1086/304888

Patil, A., Huard, D., & Fonnesbeck, C. J. (2010). PyMC: Bayesian Stochastic Modelling in
Python. Journal of Statistical Software, 35(4), 1–81. https://doi.org/10.18637/jss.v035.i04

Petersen, M. S., Weinberg, M. D., & Katz, N. (2022). EXP: N-body integration using basis
function expansions. 510(4), 6201–6217. https://doi.org/10.1093/mnras/stab3639

Naik, & Petersen. (2024). lintsampler: Easy random sampling via linear interpolation. Journal of Open Source Software, 9(102), 6906.
https://doi.org/10.21105/joss.06906.

4

https://lintsampler.readthedocs.io
https://doi.org/10.21105/joss.04113
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.21105/joss.01864
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.21105/joss.05582
https://doi.org/10.1086/304888
https://doi.org/10.18637/jss.v035.i04
https://doi.org/10.1093/mnras/stab3639
https://doi.org/10.21105/joss.06906


Vasiliev, E. (2019). AGAMA: action-based galaxy modelling architecture. 482(2), 1525–1544.
https://doi.org/10.1093/mnras/sty2672

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy
1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Naik, & Petersen. (2024). lintsampler: Easy random sampling via linear interpolation. Journal of Open Source Software, 9(102), 6906.
https://doi.org/10.21105/joss.06906.

5

https://doi.org/10.1093/mnras/sty2672
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.06906

	Summary
	Statement of need
	Use Cases
	1. Expensive PDF
	2. Multimodal PDF
	3. PDF with large dynamic range
	4. Noise needs to be minimised

	‘Real World’ Example
	Caveats

	Usage
	Features
	Acknowledgements
	References

