
SetVis: Visualizing Large Numbers of Sets and
Intersections
R. A. Ruddle 1,2, L. Hama 1, P Wochner 2, and O. T. Strickson 2

1 University of Leeds, Leeds, United Kingdom 2 Alan Turing Institute, London, United Kingdom
DOI: 10.21105/joss.06925

Software
• Review
• Repository
• Archive

Editor: Marcel Stimberg
Reviewers:

• @kirangadhave
• @jibalamy

Submitted: 10 June 2024
Published: 12 November 2024

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
Set-type data occurs in many domains such as life sciences (Lamy & Tsopra, 2019), health
(Landolfi et al., 2022) and the retail industry (Adnan & Ruddle, 2018), as well as in generic
applications such as analysing structures of missing data (Ruddle, Adnan, & Hall, 2022) and
association rule mining (Wang et al., 2020). SetVis is new matrix-based set visualization
software, implemented as a Python package which is available from PyPi. The documentation
is available from setvis.readthedocs.io which contains various hands-on Jupyter notebooks
guiding users to use the package. SetVis uses a memory-efficient design, operates with datasets
held in RAM or a database such as PostgreSQL, and allows user interaction graphically or
programmatically. A technical evaluation shows that SetVis uses orders of magnitude less
memory than the UpSet (Lex et al., 2014) Python package (Nothman, 2022).

Statement of need
Although a wide variety of set visualization software has been developed (Alsallakh & Ren,
2016; Jia et al., 2021), most of such software generates Venn or Euler diagrams so is only
suitable for data that contain fewer than ten sets (Jia et al., 2021). Other software visualizes
50+ sets but either has little support for set intersection tasks (Alper et al., 2011; Dörk
et al., 2012; Freiler et al., 2008; Kim et al., 2007) or only visualizes pairwise intersections
(Molbiotools, 2022; Yalcin et al., 2015).

The best-known software for analysing rich patterns in set data are the R and Python UpSet
plot packages (Conway et al., 2017; Nothman, 2022), but the memory requirement of both
packages increases linearly with the number of cells (i.e., rows × columns) in a dataset, which
makes the packages unusable with big data. The ACE software (Ruddle, Adnan, Kavanagh, et
al., 2022) uses more memory-efficient data structures, but first requires the whole of a dataset
to have been loaded into RAM (again, clearly an issue for big data), and is a stand-alone
Java application that cannot be integrated with Jupyter Notebooks or similar workflows. The
SetVis python package addresses the above collective weaknesses because it: (a) operates
with datasets that may be either held in RAM or out of core (in a PostgreSQL database), (b)
stores sets and intersections in memory-efficient data structures (like ACE), (c) can be used
within Jupyter Notebooks (or similar) to aid the replicability of analysis workflows, and (d)
allows users to interact graphically in a notebook as well as programmatically.

Ruddle et al. (2024). SetVis: Visualizing Large Numbers of Sets and Intersections. Journal of Open Source Software, 9(103), 6925. https:
//doi.org/10.21105/joss.06925.

1

https://orcid.org/0000-0001-8662-8103
https://orcid.org/0000-0003-1912-4890
https://orcid.org/0000-0003-4066-8614
https://orcid.org/0000-0002-8177-5582
https://doi.org/10.21105/joss.06925
https://github.com/openjournals/joss-reviews/issues/6925
https://github.com/alan-turing-institute/setvis
https://doi.org/10.5281/zenodo.14009355
https://marcel.stimberg.info/
https://orcid.org/0000-0002-2648-4790
https://github.com/kirangadhave
https://github.com/jibalamy
https://creativecommons.org/licenses/by/4.0/
https://pypi.org/project/setvis
https://setvis.readthedocs.io
https://doi.org/10.21105/joss.06925
https://doi.org/10.21105/joss.06925


Design

Figure 1: An example APC combination heatmap shows the fields (X axis), each combination of missing
values (Y axis) and the number of records that are in each combination (colour) of the APC (Admitted
Patient Care) dataset included in the package. The top, 4th from top and bottom six combinations are a
monotone pattern. However, the other seven combinations show that there is another pattern that has
gaps in the DIAG fields.

SetVis provides the same six built-in visualizations as ACE (Ruddle, Adnan, Kavanagh, et al.,
2022). The main two show visualizations of sets (in a bar chart) and set intersections (in
a heatmap). The other four visualizations make SetVis scalable to data that contains large
numbers of sets and/or intersections, by showing histograms of set cardinality, intersection
degree and intersection cardinality, and an intersection degree bar chart. All of the visualizations
are interactive (implemented with Bokeh, Bokeh Development Team, 2018), but users may
also interact programmatically and freely interleave the two forms of interaction. Examples
and tutorials are provided with the installation. A screenshot of SetVis version v0.1rc5 of the
heatmap visualizations within Jupyter notebooks is shown in Figure 1.

Jupyter notebooks have been widely adopted in the Python data science ecosystem for
exploratory data analysis. It is considered good practice for computational notebooks to
obey principles of (i) top-to-bottom re-executability and (ii) repeatability, including by others
(Quaranta et al., 2022). The SetVis design allows these principles to be respected.

SetVis is underpinned by memory-efficient data structures. Set membership information for
each of set membership information for each of 𝐾 sets can be represented with a mapping from
an element (represented by its index) to a tuple of 𝐾 booleans based on indicator functions
for each of these sets:

𝑚𝑒𝑚𝑏𝑒𝑟𝑠 ∶ 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥 → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}𝐾. (1)

Ruddle et al. (2024). SetVis: Visualizing Large Numbers of Sets and Intersections. Journal of Open Source Software, 9(103), 6925. https:
//doi.org/10.21105/joss.06925.

2

https://doi.org/10.21105/joss.06925
https://doi.org/10.21105/joss.06925


One component of the resulting tuple indicates membership of a particular set. Storing this
mapping explicitly (e.g., as in UpSet with a dataframe, Conway et al., 2017; Nothman, 2022)
requires 𝑂(𝐾𝑁) storage, where 𝐾 and 𝑁 are the number of sets and the number of elements.
When 𝐾 is large, as is the case for many real-world datasets, this can be inefficient. The
number of unique set intersections, 𝑅, is often much smaller than the number of records,
𝑅 ≪ 𝑁, and can be at most 𝑁 (if each element is member of a unique combination of sets).
SetVis makes use of this idea, and considers

𝑚𝑒𝑚𝑏𝑒𝑟𝑠 = 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠 ∘ 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐼𝑑 (2)

where
𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐼𝑑 ∶ 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥 → 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥 (3)

maps an element index to an index referring to the particular combination of sets to which
that element belongs; and

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠 ∶ 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥 → {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}𝐾 (4)

is a bijection between an intersection index and the explicit representation of this combination.

In SetVis, these mappings are stored as a pair of Pandas dataframes (in an instance of
the Membership class), 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝐼𝑑 of size 𝑂(𝑁) and 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑒𝑚𝑏𝑒𝑟𝑠 of size
𝑂(𝑅𝐾), for a combined total of 𝑂(𝑁 +𝑅𝐾) storage.

Technical evaluation
Using a Ubuntu virtual machine with 44GB of RAM, we compared SetVis (v0.1.0) with
UpSetPlot (v0.8.0) based on two criteria: memory use and compute time. The greatest
difference was in memory usage. The UpSetR package (Conway et al., 2017) was not tested,
but uses a similar data structure to UpSetPlot (Nothman, 2022).

Tests were run with set-type data that contained two columns, 500,000 rows and 100 – 10,000
set intersections. UpSetPlot crashed when the 500,000 row dataset contained more than 500
intersections. By contrast, SetVis only used 113 MB RAM for 500,000 rows with the maximum
10,000 set intersections (see Figure 2A).

Figure 2: (A) Memory used by UpSetPlot and SetVis for set-type data with 500,000 rows, two columns
and a range of set intersections. There were always 10% more sets than intersections. (B) Memory used
by UpSetPlot and SetVis for visualizing patterns of missing data. The number of cells equals the number
of rows × columns in a dataset.

The difference was even more pronounced when the packages were used to analyze missing data
(10,000 – 500,000 rows; 10 – 700 columns; each row missing one value). UpSetPlot’s memory
scaled linearly with the number of cells (i.e., rows × columns) in a dataset, whereas SetVis’s
memory only increased gradually (see Figure 2B). There was a similarly large difference when

Ruddle et al. (2024). SetVis: Visualizing Large Numbers of Sets and Intersections. Journal of Open Source Software, 9(103), 6925. https:
//doi.org/10.21105/joss.06925.

3

https://doi.org/10.21105/joss.06925
https://doi.org/10.21105/joss.06925


each row contained 1 – 50 missing values (100 – 10,000 set intersections in each dataset),
because for missing data UpSetPlot keeps a copy of the input Pandas dataframe, as well as
having a memory-hungry design.

Acknowledgements
This research was supported by the Alan Turing Institute and the Engineering and Physical
Sciences Research Council (EP/N013980/1; EP/R511717/1).

References
Adnan, M., & Ruddle, R. (2018). A set-based visual analytics approach to analyze retail

data. Proceedings of the EuroVis Workshop on Visual Analytics (EuroVA18). https:
//doi.org/10.2312/eurova.20181110

Alper, B., Riche, N., Ramos, G., & Czerwinski, M. (2011). Design study of LineSets, a novel
set visualization technique. IEEE Transactions on Visualization and Computer Graphics,
17 (12), 2259–2267. https://doi.org/10.1109/TVCG.2011.186

Alsallakh, B., & Ren, L. (2016). Powerset: A comprehensive visualization of set intersections.
IEEE Transactions on Visualization and Computer Graphics, 23(1), 361–370. https:
//doi.org/10.1109/TVCG.2016.2598496

Bokeh Development Team. (2018). Bokeh: Python library for interactive visualization.
https://bokeh.pydata.org/en/latest/

Conway, J. R., Lex, A., & Gehlenborg, N. (2017). UpSetR: An R package for the visualization
of intersecting sets and their properties. Bioinformatics, 33(18), 2938–2940. https:
//doi.org/10.1093/bioinformatics/btx364

Dörk, M., Riche, N. H., Ramos, G., & Dumais, S. (2012). Pivotpaths: Strolling through
faceted information spaces. IEEE Transactions on Visualization and Computer Graphics,
18(12), 2709–2718. https://doi.org/10.1109/TVCG.2012.252

Freiler, W., Matkovic, K., & Hauser, H. (2008). Interactive visual analysis of set-typed data.
IEEE Transactions on Visualization and Computer Graphics, 14(6). https://doi.org/10.
1109/TVCG.2008.144

Jia, A., Xu, L., & Wang, Y. (2021). Venn diagrams in bioinformatics. Briefings in Bioinfor-
matics, 22(5), 1–17. https://doi.org/10.1093/bib/bbab108

Kim, B., Lee, B., & Seo, J. (2007). Visualizing set concordance with permutation matrices
and fan diagrams. Interacting with Computers, 19(5-6), 630–643. https://doi.org/10.
1016/j.intcom.2007.05.004

Lamy, J.-B., & Tsopra, R. (2019). RainBio: Proportional visualization of large sets in
biology. IEEE Transactions on Visualization and Computer Graphics, 26(11), 3285–3298.
https://doi.org/10.1109/TVCG.2019.2921544

Landolfi, A., Picillo, M., Pellecchia, M. T., Troisi, J., Amboni, M., Barone, P., & Erro, R. (2022).
Screening performances of an 8-item UPSIT Italian version in the diagnosis of Parkinson’s
disease. Neurological Sciences, 1–7. https://doi.org/10.1007/s10072-022-06457-2

Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., & Pfister, H. (2014). UpSet: Visualization
of intersecting sets. IEEE Transactions on Visualization and Computer Graphics, 20(12),
1983–1992. https://doi.org/10.1109/TVCG.2014.2346248

Molbiotools. (2022). MOLBIOTOOLS - Molecular Biology Online Apps. https://molbiotools.
com/

Ruddle et al. (2024). SetVis: Visualizing Large Numbers of Sets and Intersections. Journal of Open Source Software, 9(103), 6925. https:
//doi.org/10.21105/joss.06925.

4

https://doi.org/10.2312/eurova.20181110
https://doi.org/10.2312/eurova.20181110
https://doi.org/10.1109/TVCG.2011.186
https://doi.org/10.1109/TVCG.2016.2598496
https://doi.org/10.1109/TVCG.2016.2598496
https://bokeh.pydata.org/en/latest/
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1109/TVCG.2012.252
https://doi.org/10.1109/TVCG.2008.144
https://doi.org/10.1109/TVCG.2008.144
https://doi.org/10.1093/bib/bbab108
https://doi.org/10.1016/j.intcom.2007.05.004
https://doi.org/10.1016/j.intcom.2007.05.004
https://doi.org/10.1109/TVCG.2019.2921544
https://doi.org/10.1007/s10072-022-06457-2
https://doi.org/10.1109/TVCG.2014.2346248
https://molbiotools.com/
https://molbiotools.com/
https://doi.org/10.21105/joss.06925
https://doi.org/10.21105/joss.06925


Nothman, J. (2022). UpSetPlot. https://pypi.org/project/UpSetPlot/

Quaranta, L., Calefato, F., & Lanubile, F. (2022). Eliciting best practices for collaboration
with computational notebooks. Proceedings of the ACM on Human-Computer Interaction,
6(CSCW1), 1–41. https://doi.org/10.1145/3512934

Ruddle, R., Adnan, M., & Hall, M. (2022). Using set visualisation to find and explain patterns
of missing values: A case study with NHS hospital episode statistics data. BMJ Open,
12(11), e064887. https://doi.org/10.1136/bmjopen-2022-064887

Ruddle, R., Adnan, M., Kavanagh, R., Strickson, O., & Wochner, P. (2022). The ACE
software, and training materials for visualizing missing data and set-type data. https:
//doi.org/10.5518/1150

Wang, Q., Xu, Z., Chen, Z., Wang, Y., Liu, S., & Qu, H. (2020). Visual analysis of
discrimination in machine learning. IEEE Transactions on Visualization and Computer
Graphics, 27 (2), 1470–1480. https://doi.org/10.1109/TVCG.2020.3030471

Yalcin, M. A., Elmqvist, N., & Bederson, B. B. (2015). AggreSet: Rich and scalable set
exploration using visualizations of element aggregations. IEEE Transactions on Visualization
and Computer Graphics, 22(1), 688–697. https://doi.org/10.1109/TVCG.2015.2467051

Ruddle et al. (2024). SetVis: Visualizing Large Numbers of Sets and Intersections. Journal of Open Source Software, 9(103), 6925. https:
//doi.org/10.21105/joss.06925.

5

https://pypi.org/project/UpSetPlot/
https://doi.org/10.1145/3512934
https://doi.org/10.1136/bmjopen-2022-064887
https://doi.org/10.5518/1150
https://doi.org/10.5518/1150
https://doi.org/10.1109/TVCG.2020.3030471
https://doi.org/10.1109/TVCG.2015.2467051
https://doi.org/10.21105/joss.06925
https://doi.org/10.21105/joss.06925

	Summary
	Statement of need
	Design
	Technical evaluation
	Acknowledgements
	References

