The Journal of Open Source Software

DOI: 10.21105/joss.06930

Software
= Review @0
= Repository &0
= Archive &0

Editor: Daniel S. Katz 7
Reviewers:

= ©@ClaudMor
= @pitmonticone

= @nwlandry

Submitted: 19 June 2024
Published: 24 July 2024

License

pymnet: A Python Library for Multilayer Networks

1,3

Tarmo Nurmi®?!, Arash Badie-Modiri @2, Corinna Coupette 4 and

Mikko Kiveld ®1!

1 Aalto University, Finland 2 Central European University, Austria 3 KTH Royal Institute of Technology,
Sweden 4 Max Planck Institute for Informatics, Germany

Summary

Many complex systems can be readily modeled as networks and represented as graphs. Such
systems include social interactions, transport infrastructures, biological pathways, brains,
ecosystems, and many more. A major advantage of representing complex systems as graphs
is that the same graph tools and methods can be applied in a wide variety of domains.
However, the graph representation has its limitations: many systems contain nodes with
multidimensional features, interactions of various types, different levels of hierarchy, or multiple
modalities, which deserve to be modeled but cannot be described by simple graphs. Multilayer
networks (Kiveld et al., 2014) generalize graphs to capture the rich network data often
associated with complex systems, allowing us to study a broad range of phenomena using
the same representations, tools, and methods. With pymnet, we introduce a Python package
that provides the essential data structures and computational tools for multilayer-network
analysis. As highlights, the library offers efficient and scalable implementations for sparse
multilayer networks and multiplex networks, integration with bliss to analyze multilayer-

Authors of papers retain copyright network isomorphisms and automorphisms, and versatile methods for multilayer-network
and release the work under a visualization.

Creative Commons Attribution 4.0

International License (CC BY 4.0).

Statement of Need

pymnet is a Python package for creating, analyzing, and visualizing multilayer networks. It
is designed for network scientists with an easy-to-use yet flexible interface, featuring, inter
alia, representations of a very general class of multilayer networks, structural metrics of
multilayer networks (e.g., clustering coefficients (Cozzo et al., 2015) and graphlet analysis
(Sallmen et al., 2022)), multilayer-network transforms, multilayer-network isomorphisms and
automorphisms (Kiveld & Porter, 2017) (with bliss (Junttila & Kaski, 2007, 2011)), and
random multilayer-network models.

Different kinds of multilayer network data are becoming increasingly available, but our compu-
tational tools for handling such data lag behind. Python is a popular programming language
for network scientists and data scientists, and pymnet addresses the need for a feature-rich
multilayer-networks package in the Python language that is actively maintained.

pymnet implements the general multilayer-network framework described by Kivel3 et al. (2014).
A multilayer network M is defined by M = (V,,, E, V, L), where the sequence L = (L,)%_,
defines sets L, of elementary layers, the set V defines the nodes of the network, the node-layers
are V), CV x Ly X ... x Ly, and the edges E,; C V), x V,,; are defined between node-layers.
Put simply, a node-layer is an association of a node v € V with a layer € L; x ... x L, of
dimensionality d, nodes can exist on an arbitrary number of layers, and edges can connect
node-layers within layers and across arbitrary pairs of layers, which can differ in an arbitrary

number of dimensions. The dimensions 1,2, ..., d are called the aspects of the network.

Nurmi et al. (2024). pymnet: A Python Library for Multilayer Networks. Journal of Open Source Software, 9(99), 6930. https://doi.org/10.21105/ 1
joss.06930.

https://orcid.org/0000-0003-0258-7776
https://orcid.org/0000-0002-2027-360X
https://orcid.org/0000-0001-9151-2092
https://orcid.org/0000-0003-2049-1954
https://doi.org/10.21105/joss.06930
https://github.com/openjournals/joss-reviews/issues/6930
https://github.com/mnets/pymnet
https://doi.org/10.5281/zenodo.12806499
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/ClaudMor
https://github.com/pitmonticone
https://github.com/nwlandry
https://creativecommons.org/licenses/by/4.0/
https://github.com/mnets/pymnet
https://users.aalto.fi/~tjunttil/bliss/
https://doi.org/10.21105/joss.06930
https://doi.org/10.21105/joss.06930

The Journal of Open Source Software

Beyond the general multilayer-network framework described by Kivela et al. (2014), pymnet also
includes a specialized implementation of multiplex networks, a common subtype of multilayer
networks. In multiplex networks, edges across layers (interlayer edges) only occur between a
node and its counterpart(s) on the other layers. The advantages of this specialization include,
for example, automatic lazy evaluation of interlayer-coupling edges.

Main Features

pymnet's main data structure is MultilayerNetwork, which is implemented as a dictionary of
dictionaries with a tensor-like interface, where each key represents a node, and each value is
another dictionary containing information about the neighbors of each node, with the neighbors
as keys and the weights of their incident edges as values. This structure ensures that adding
nodes, removing nodes, querying for existence of edges, or querying for edge weights all have
constant average time complexity, and iterating over the neighbors of a node is linear in the
number of nodes. Furthermore, the memory requirements are in O(|V| + |L| + |E|) and
typically dominated by the number of edges in the network.

To represent multiplex networks, pymnet offers MultiplexNetwork, which exploits the special
structure of interlayer edges for efficiency, storing intralayer edges separately for each layer and
only generating interlayer edges according to the applicable interlayer-coupling rules when they
are explicitly needed. This ensures that we can always iterate over intralayer edges in linear
time, and that interlayer edges only require constant memory (i.e., the memory to store the
rule to generate them).

pymnet contains submodules for advanced analysis of multilayer networks. One example is
graphlet-degree analysis, a powerful tool for investigating the structure of graphs that has been
generalized to multilayer networks (Sallmen et al., 2022) and is implemented in pymnet for
single-aspect multiplex networks. A graphlet is an isomorphism class of (connected) induced
subgraphs that are typically small. pymnet can generate all graphlets of a specified size, i.e.,
all isomorphic multiplex networks with a user-specified number of nodes and layers (coming
from a user-defined set of layers), user-defined interlayer couplings, and a user-defined type of
multilayer isomorphism. From the graphlets, pymnet can compute the automorphism orbits of
nodes or node-layers in the graphlets, with a user-specified type of isomorphism. For example,
we can use pymnet to enumerate and visualize all automorphism orbits of nodes in single-aspect
multiplex graphlets with two or three nodes and two layers under node-layer isomorphism. The
results are depicted in Figure 1.

Figure 1: Using pymnet to enumerate and visualize automorphism orbits of nodes in single-aspect
multiplex graphlets under node-layer isomorphism. Visualization script adapted from Sallmen et al.
(2022).

Nurmi et al. (2024). pymnet: A Python Library for Multilayer Networks. Journal of Open Source Software, 9(99), 6930. https://doi.org/10.21105/ 2

joss.06930.

https://github.com/bolozna/multiplex-graphlet-analysis/blob/master/visualization.py
https://doi.org/10.21105/joss.06930
https://doi.org/10.21105/joss.06930

The Journal of Open Source Software

Other amenities shipped with pymnet include graph generators for generalizations of popular
random-graph models to multilayer networks (e.g., Erdés-Rényi models and configuration
models) as well as utilities for multilayer-network visualization.

Real-World Example

As an example of how pymnet can be used to analyze real-world data, we explore data
documenting the legal international trade in endangered species, which is crucial for monitoring
progress toward the United Nations' Sustainable Development Goal 15. The Convention on
International Trade in Endangered Species of Wild Fauna and Flora (CITES) regulates this
trade, and the CITES database provides highly granular trade data, accompanied by great
documentation.

To keep matters simple, we analyze an excerpt from the CITES database, investigating the
trade in endangered species in two different years (2010 and 2020), for two different trade
terms (live specimens and meat), and restricting ourselves to species taken from the wild and
traded for commercial purposes. In the multilayer-network model representing this data, our
nodes are countries or territories importing and exporting endangered species (represented by
their ISO-2 codes), our aspects are years (two elementary layers: 2010 and 2020) and trade
terms (two elementary layers: “live” and “meat”), and our edges represent bilateral trades,
measured in the number of specimens (“live") or the number of kilograms (“meat”) traded.
More details on the data provenance and our preprocessing steps are available in the pymnet
repository.

In Figure 2, we visualize the data with pymnet, only drawing undirected edges representing
aggregate trade volumes of at least one million specimens (“live") or one thousand kilograms
(“meat”), scaling nodes by degree and highlighting OECD countries in red, as well as mapping
trade volume to edge widths and edge colors. Between 2010 and 2020, we observe roughly
equal levels of trade in live specimens, but a pronounced increase in both trade volume and
diversity of trade partners for trade in meat.

live

meat meat

Figure 2: Trade in live specimens (top) and meat (bottom) of endangered species in the years 2010
(left) and 2020 (right).

Installation and Usage

Detailed installation and usage instructions, including tutorials demonstrating pymnet’'s main
functionality, can be found in the pymnet documentation.

Nurmi et al. (2024). pymnet: A Python Library for Multilayer Networks. Journal of Open Source Software, 9(99), 6930. https://doi.org/10.21105/ 3

joss.06930.

https://trade.cites.org/
https://trade.cites.org/cites_trade_guidelines/en-CITES_Trade_Database_Guide.pdf
https://mnets.github.io/pymnet/
https://doi.org/10.21105/joss.06930
https://doi.org/10.21105/joss.06930

The Journal of Open Source Software

Related Packages

pymnet extends the popular networkx package developed for single-layer network analysis such
that networkx functions can be applied to the individual layers of a multilayer network. These
functions are automatically wrapped for use in pymnet, which has the benefit of automatically
including new functionality added to networkx. To solve multilayer-network isomorphisms,
pymnet uses a backend package, which can be either networkx (limited functionality) or bliss
(Junttila & Kaski, 2007, 2011) (full functionality).

For multilayer-network visualization, pymnet uses matplotlib as its default backend, enabling
users to exert low-level control over figure aesthetics to produce publication-quality plots.
Support for interactive figures is provided via JavaScript and D3.js as a backend.

To the best of our knowledge, the only other libraries offering tools to work with multilayer
networks in Python are multiNetX and py3plex, both of which appeared after pymnet. Support
for working with multilayer networks in Julia is offered by MultilayerGraphs.jl from Moroni &
Monticone (2023), who also compile a list of R packages offering similar functionality.

Projects Using pymnet

pymnet has been used in numerous scientific publications across different disciplines, such as
Kivelad et al. (2014), Cozzo et al. (2015) Kiveld & Porter (2017), Danchev et al. (2019),
Rio-Chanona et al. (2020), Zhou et al. (2020), Baek et al. (2021), Bergermann & Stoll
(2021), Sallmen et al. (2022), and Nurmi & Kivela (2023).

Acknowledgments

This work was supported by the European Commission FET-Proactive project PLEXMATH
(Grant No. 317614), the Academy of Finland (Grant No. 349366), and Digital Futures at KTH.

References

Baek, E. C., Porter, M. A., & Parkinson, C. (2021). Social network analysis for social
neuroscientists. Social Cognitive and Affective Neuroscience, 16(8), 883-901. https:
//doi.org/10.1093/scan/nsaa069

Bergermann, K., & Stoll, M. (2021). Orientations and matrix function-based centralities in
multiplex network analysis of urban public transport. Applied Network Science, 6, 1-33.
https://doi.org/10.1007 /s41109-021-00429-9

Cozzo, E., Kiveld, M., De Domenico, M., Solé-Ribalta, A., Arenas, A., Gémez, S., Porter, M.
A., & Moreno, Y. (2015). Structure of triadic relations in multiplex networks. New Journal
of Physics, 17(7), 073029. https://doi.org/10.1088/1367-2630/17/7 /073029

Danchev, V., Rzhetsky, A., & Evans, J. A. (2019). Centralized scientific communities are less
likely to generate replicable results. Elife, 8, e43094. https://doi.org/10.7554 /elLife.43094

Junttila, T., & Kaski, P. (2007). Engineering an efficient canonical labeling tool for large
and sparse graphs. In 2007 proceedings of the ninth workshop on algorithm engineering
and experiments (ALENEX) (pp. 135-149). Society for Industrial; Applied Mathematics.
https://doi.org/10.1137/1.9781611972870.13

Junttila, T., & Kaski, P. (2011). Conflict propagation and component recursion for canonical
labeling. In Lecture notes in computer science (pp. 151--162). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-19754-3_16

Nurmi et al. (2024). pymnet: A Python Library for Multilayer Networks. Journal of Open Source Software, 9(99), 6930. https://doi.org/10.21105/ 4
joss.06930.

https://networkx.org/
https://users.aalto.fi/~tjunttil/bliss/
https://matplotlib.org/
https://d3js.org/
https://github.com/nkoub/multinetx
https://github.com/SkBlaz/py3plex
https://github.com/JuliaGraphs/MultilayerGraphs.jl
https://doi.org/10.1093/scan/nsaa069
https://doi.org/10.1093/scan/nsaa069
https://doi.org/10.1007/s41109-021-00429-9
https://doi.org/10.1088/1367-2630/17/7/073029
https://doi.org/10.7554/eLife.43094
https://doi.org/10.1137/1.9781611972870.13
https://doi.org/10.1007/978-3-642-19754-3_16
https://doi.org/10.21105/joss.06930
https://doi.org/10.21105/joss.06930

SS

The Journal of Open Source Software

Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014).
Multilayer networks. Journal of Complex Networks, 2(3), 203-271. https://doi.org/10.
1093/comnet/cnu016

Kiveld, M., & Porter, M. A. (2017). Isomorphisms in multilayer networks. [EEE Transactions
on Network Science and Engineering, 5(3), 198-211. https://doi.org/10.1109/ TNSE.2017.
2753963

Moroni, C., & Monticone, P. (2023). MultilayerGraphs.jl: Multilayer network science in Julia.
Journal of Open Source Software, 8(83), 5116. https://doi.org/10.21105/joss.05116

Nurmi, T., & Kivela, M. (2023). Subnetwork enumeration algorithms for multilayer networks.
https://doi.org/10.48550/arXiv.2308.00083

Rio-Chanona, R. M. del, Korniyenko, Y., Patnam, M., & Porter, M. A. (2020). The multiplex
nature of global financial contagions. Applied Network Science, 5, 1-23. https://doi.org/
10.1007/s41109-020-00301-2

Sallmen, S., Nurmi, T., & Kivela, M. (2022). Graphlets in multilayer networks. Journal of
Complex Networks, 10(2), cnac005. https://doi.org/10.1093/comnet/cnac005

Zhou, Y., Li, Z., Liu, Y., & Deng, F. (2020). Network proximity and communities in
innovation clusters across knowledge, business, and geography: Evidence from China. IEEE
Transactions on Engineering Management, 68(5), 1388-1397. https://doi.org/10.1109/
TEM.2020.3032160

Nurmi et al. (2024). pymnet: A Python Library for Multilayer Networks. Journal of Open Source Software, 9(99), 6930. https://doi.org/10.21105/ 5

joss.06930.

https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.1109/TNSE.2017.2753963
https://doi.org/10.1109/TNSE.2017.2753963
https://doi.org/10.21105/joss.05116
https://doi.org/10.48550/arXiv.2308.00083
https://doi.org/10.1007/s41109-020-00301-2
https://doi.org/10.1007/s41109-020-00301-2
https://doi.org/10.1093/comnet/cnac005
https://doi.org/10.1109/TEM.2020.3032160
https://doi.org/10.1109/TEM.2020.3032160
https://doi.org/10.21105/joss.06930
https://doi.org/10.21105/joss.06930

	Summary
	Statement of Need
	Main Features
	Real-World Example
	Installation and Usage
	Related Packages
	Projects Using pymnet
	Acknowledgments
	References

