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Summary
Point cloud registration is a task of aligning two point clouds measured by 3D ranging
sensors, for example, LiDARs and range cameras. Iterative point cloud registration, also
known as fine registration or local registration, iteratively refines the transformation between
point clouds starting from an initial guess. Each iteration involves a proximity-based point
correspondence search and the minimization of the distance between corresponding points,
continuing until convergence. Iterative closest point (ICP) and its variants, such as Generalized
ICP, are representative iterative point cloud registration algorithms. They are widely used in
applications like autonomous vehicle localization (Kim et al., 2022), place recognition (Wang
et al., 2020), and object classification (Izadinia & Seitz, 2020). Since these applications
often require real-time or near-real-time processing, speed is a critical factor in point cloud
registration routines.

small_gicp provides efficient and parallel algorithms to create an extremely fast point cloud
registration pipeline. It offers parallel implementations of downsampling, nearest neighbor
search, local feature extraction, and registration to accelerate the entire process. small_gicp
is implemented as a header-only C++ library with minimal dependencies to offer efficiency,
portability, and customizability.

Statement of need
There are several point cloud processing libraries, and PCL (Rusu & Cousins, 2011), Open3D
(Zhou et al., 2018), libpointmatcher (Pomerleau et al., 2013) are commonly used in real-
time applications owing to their performant implementations. Although they offer numerous
functionalities, including those required for point cloud registration, they present several
challenges for practical applications and scientific research.

Processing speed: A typical point cloud registration pipeline includes processes such as
downsampling, nearest neighbor search (e.g., KdTree construction), local feature estimation,
and registration error minimization. PCL and Open3D support multi-threading only for parts
of these processes (feature estimation and registration error minimization), with the remaining
single-threaded parts often limiting the overall processing speed. Additionally, the multi-thread
implementations in these libraries can have significant overheads, reducing scalability to many-
core CPUs. These issues make it difficult to meet real-time processing requirements, especially
on low-specification CPUs. It is also difficult to fully utilize the computational power of modern
high-end CPUs.

Customizability: Customizing the internal workings (e.g., replacing the registration cost function
or changing the correspondence search method) of existing implementations is challenging due
to hard-coded processes. This poses a significant hurdle for research and development, where
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testing new cost functions and search algorithms is essential.

small_gicp: To address these issues and accelerate the development of point cloud registration-
related systems, we designed small_gicp with the following features:

• Fully parallelized point cloud preprocessing and registration algorithms with minimal
overhead, offering up to 2x speed gain in single-threaded scenarios and better scalability
in multi-core environments.

• A modular and customizable framework using C++ templates, allowing easy customization
of the algorithm’s internal workings while maintaining efficiency.

• A header-only C++ library implementation for easy integration into user projects, with
Python bindings provided for collaborative use with other libraries (e.g., Open3D).

Functionalities
small_gicp implements several preprocessing algorithms related to point cloud registration,
and ICP variant algorithms (point-to-point ICP, point-to-plane ICP, and Generalized ICP based
on distribution-to-distribution correspondence).

• Downsampling
– Voxelgrid sampling
– Random sampling

• Nearest neighbor search and point accumulation structures
– KdTree
– Linear iVox (supports incremental points insertion and LRU-cache-based voxel

deletion) (Bai et al., 2022)
– Gaussian voxelmap (supports incremental points insertion and LRU-cache-based

voxel deletion) (Kenji Koide & Banno, 2021)
• Registration error functions

– Point-to-point ICP error (Zhang, 1994)
– Point-to-plane ICP error
– Generalized ICP error (Segal et al., 2009)
– Robust kernels

• Least squares optimizers
– GaussNewton optimizer
– LevenbergMarquardt optimizer

Benchmark results
• Single-threaded and multi-threaded (6 threads) small_gicp::voxelgrid_sampling are

approximately 1.3x and 3.2x faster than pcl::VoxelGrid, respectively.
• Multi-threaded construction of small_gicp::KdTree can be up to 6x faster than that of

nanoflann.
• Single-threaded small_gicp::GICP is about 2.4x faster than pcl::GICP, with the multi-

threaded version showing better scalability.

More details can be found at https://github.com/koide3/small_gicp/blob/master/
BENCHMARK.md.

Future work
The efficiency of nearest neighbor search significantly impacts the overall performance of point
cloud registration. While small_gicp currently offers efficient and parallel implementations
of KdTree and voxelmap, which are general and useful in many situations, there are other
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nearest neighbor search methods that can be more efficient under mild assumptions about
the point cloud measurement model (e.g., projective search (Serafin & Grisetti, 2015)). We
plan to implement these alternative neighbor search algorithms to further enhance the speed
of the point cloud registration process. The design of small_gicp, where nearest neighbor
search and pose optimization are decoupled, facilitates the easy integration of these new search
algorithms.
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