SS

The Journal of Open Source Software

ugv_nav4d: Advanced Multi-Surface Navigation for
Unmanned Ground Vehicles Using 4D Path Planning
Techniques

Arne Bockmann!, Janosch Machowinski!, and Muhammad Haider Khan
Lodhi ®2

1 Cellumation GmbH 2 DFKI GmbH
DOI: 10.21105/joss.06983

Software
« Review O Summary
= Repository &7
= Archive 7 The ugv_navéd is a global path planner designed for terrestrial robots to navigate complex

indoor and outdoor environments. To achieve this, ugv_nav4d uses a traversability map
(TraversabilityMap3d) based on a multi-layered surface map (MLSMap) (Born & Arnold, 2015;
Triebel et al., 2006), enabling planning in multi-surface environments. The path is built by
selecting motion primitives tailored to the robot's mechanical features, ensuring compatibility
with its motion capabilities.

Editor: Tristan Miller 7
Reviewers:

= @soraxas

= @OlgerSiebinga

Submitted: 20 June 2024
Published: 02 December 2024

License
Authors of papers retain copyright
and release the work under a

Creative Commons Attribution 4.0
International License (CC BY 4.0). Figure 1: Planned trajectory in a multi-storey environment.

a) Multi-layered surface (MLS) map of a (b) TraversabilityMap3D generated based on (c) Planned Trajectory (yellow) in a multi-
parking deck the MLS Map. storey environment

Statement Of Need

Accurate ground surface representation is crucial for ground-based robots in complex terrains.
The ROS2 Navigation Stack (nav2) (Macenski et al., 2020), which uses voxel maps for 3D
navigation, often loses detail and accuracy, especially in multi-storey environments, due to its
discrete voxelization and separate costmaps for each floor.

We propose ugv__nav4d, a path planner that enhances environmental representation with
Multi-Layered Surface Maps (MLS) (Triebel et al., 2006) and a 3D Traversability Map (Born
& Arnold, 2015). Ugv_nav4d avoids the “stepping” effect of voxel maps by using a continuous
grid and detailed vertical information, providing smoother and more accurate terrain modelling.

Unlike nav2, ugv_nav4d simplifies planning with a single TraversabilityMap3D, which contains
detailed ground surface data, offering a superior alternative to nav2's 3D costmaps. For users,
MLS maps provide a smoother, more realistic view of terrain compared to the blocky voxel
maps, enhancing navigation and decision-making in complex environments.

Software Components

The core software components of the planner are

Bockmann et al. (2024). ugv_nav4d: Advanced Multi-Surface Navigation for Unmanned Ground Vehicles Using 4D Path Planning Techniques. 1
Journal of Open Source Software, 9(104), 6983. https://doi.org/10.21105/joss.06983.

https://orcid.org/0009-0008-1199-3489
https://doi.org/10.21105/joss.06983
https://github.com/openjournals/joss-reviews/issues/6983
https://github.com/dfki-ric/ugv_nav4d
https://doi.org/10.5281/zenodo.14236941
https://logological.org/
https://orcid.org/0000-0002-0749-1100
https://github.com/soraxas
https://github.com/OlgerSiebinga
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.06983

SS

The Journal of Open Source Software

= EnvironmentXYZTheta
= PathPlanner
= PreComputedMotions

EnvironmentXYZTheta

The core of ugv_navé4d is based on SBPL (Search-Based Planning Library) (Likhachev et
al., 2005). The EnvironmentXYZTheta implements all interfaces needed by SBPL to enable
ARA* based planning. The environment in SBPL is a state space which connects states with
associated transition costs. A state is defined by the position (x,y,z) and orientation (yaw)
of the robot. The EnvironmentXYZTheta uses a TraversabilityGenerator3d (Machowinski &
Bockmann, 2016) to generate a TraversabilityMap3d from a MLSMap, which classifies the
MLSMap patches into traversable, non-traversable, and unknown terrain and stores metadata
of the ground surface (e.g., slope of the patch, supporting plane, etc.).

Figure 2: The Moon Crater and its TraversabilityMap3d in the Space Hall at the RIC, DFKI (Robotics
Exploration Laboratory, 2024).

PathPlanner

The search for the shortest path in ugv_nav4d is based on the SBPL-provided ARA* planner.
It builds a state space of future robot states and uses a time heuristic to compute the shortest
path on the TraversabilityMap3D. Robot and terrain-specific information, including robot
dimensions and orientations, collision checks with obstacles, terrain steepness, and motion
primitives are incorporated as additional costs in the search for the successive states. The
planner generates a complete trajectory for the planned path, which can then be executed by
a trajectory follower (Babu, 2016).

Trajectory is created based on environment map .

Figure 3: The planned trajectory (yellow) using the robot Hunter-SE in the final demostration of the
project KIMMI-SF.

PreComputedMotions

Motion primitives are pre-defined movements stored as spline trajectories, representing feasible
robot motions from a given pose (X, y, z, yaw). The planner uses these primitives to find
successor states, ensuring paths are traversable and collision-free. Each motion has a base cost
for flat surfaces, with additional penalties for factors like steepness. Primitives fall into four
categories: Forward, Backward, Lateral, and Point-Turn. These primitives can be tailored for

Bockmann et al. (2024). ugv_nav4d: Advanced Multi-Surface Navigation for Unmanned Ground Vehicles Using 4D Path Planning Techniques. 2
Journal of Open Source Software, 9(104), 6983. https://doi.org/10.21105/joss.06983.

https://robotik.dfki-bremen.de/de/forschung/robotersysteme/hunterse
https://robotik.dfki-bremen.de/de/forschung/projekte/kimmi-sf
https://doi.org/10.21105/joss.06983

SS

The Journal of Open Source Software

different robot types: Ackermann drive robots use forward and backward primitives, differential
drive robots can use point-turn primitives, and omni-directional robots utilize all four types.
Point-turn primitives are unique as they don't use splines, unlike the others generated by the
SbplSplineMotionPrimitives library (Béckmann, 2016).

Figure 4: A pool of forward motion primitives by the PreComputedMotions module.

Debugging

PlannerGui

A GUI for ugv_nav4d allows debugging and testing by experimenting with planner parameters
on a static map. The PlannerGui can load point clouds from ply or serialized MLS maps,
using left and right clicks to set start and end locations. Errors can be logged to a file and
ugv_nav4d_replay can be used to analyze the state and execute planning in a controlled
environment.

Figure 5: GUI for debugging and testing of ugv_nav4d.

Field Tests

ugv_nav4d has been used extensively in research projects for almost a decade. It has been
utilized for autonomous navigation in several projects, including Entern, ANT, VIPE, KIMMI-SF,
HiSE, PerSim, and CoRobX. As a versatile planner, it has also been used for various terrestrial
robots, such as Artemis, Coyote-Ill, Crex, Charlie, Hunter-SE, SherpaTT, and Asguard-1V.

Acknowledgements

The ugv_nav4d library was initiated and is currently developed at the Robotics Innovation
Center of the German Research Center for Artificial Intelligence (DFKI) in Bremen, together
with the Robotics Group of the University of Bremen. The development was started in the
scope of the Entern project (50RA1406), which has been funded by the German Aerospace
Center (DLR) with funds from the German Federal Ministry for Economic Affairs and Climate
Action (BMWK).

Bockmann et al. (2024). ugv_nav4d: Advanced Multi-Surface Navigation for Unmanned Ground Vehicles Using 4D Path Planning Techniques. 3
Journal of Open Source Software, 9(104), 6983. https://doi.org/10.21105/joss.06983.

https://robotik.dfki-bremen.de/de/forschung/projekte/entern
https://robotik.dfki-bremen.de/de/forschung/projekte/ant
https://robotik.dfki-bremen.de/de/forschung/projekte/vipe
https://robotik.dfki-bremen.de/de/forschung/projekte/kimmi-sf
https://robotik.dfki-bremen.de/de/forschung/projekte/hise
https://robotik.dfki-bremen.de/de/forschung/projekte/persim
https://robotik.dfki-bremen.de/de/forschung/projekte/corob-x
https://robotik.dfki-bremen.de/de/forschung/robotersysteme/artemis
https://robotik.dfki-bremen.de/de/forschung/robotersysteme/coyote-iii
https://robotik.dfki-bremen.de/de/forschung/robotersysteme/crex
https://robotik.dfki-bremen.de/de/forschung/robotersysteme/charlie
https://robotik.dfki-bremen.de/de/forschung/robotersysteme/hunterse
https://robotik.dfki-bremen.de/de/forschung/robotersysteme/sherpatt
https://robotik.dfki-bremen.de/de/forschung/robotersysteme/asguard-iv
https://doi.org/10.21105/joss.06983

SS

The Journal of Open Source Software

We would also like to acknowledge the contributors of the ugv_nav4d repository, including
the developers visible on the project’'s GitHub contributors page, for their valuable efforts and
dedication.

References

Babu, A. (2016). Trajectory Follower. https://github.com/rock-control/control-trajectory_
follower

Bockmann, A. (2016). SBPL Spline Primitives. https://github.com/rock-planning/
planning-sbpl_spline_primitives

Born, A., & Arnold, S. (2015). SLAM Maps. https://github.com/envire/slam-maps

Likhachev, M., Ferguson, D., & Gordon, G. (2005). SBPL: Search-Based Planning Library
(Version 1.3). https://github.com/sbpl/sbpl

Macenski, S., Martin, F., White, R., & Clavero, J. G. (2020). The Marathon 2: A Navigation
System. CoRR, abs/2003.00368. https://doi.org/10.1109/IROS45743.2020.9341207

Machowinski, J., & Béckmann, A. (2016). Traversability Generator3d. https://github.com/
dfki-ric/traversability_generator3d

Robotics Exploration Laboratory. (2024). https://www.dfki.de/web/technologien-anwendungen/
living-labs/robotics-exploration-laboratory

Triebel, R., Pfaff, P., & Burgard, W. (2006). Multi-level surface maps for outdoor terrain
mapping and loop closing. 2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2276-2282. https://doi.org/10.1109/IR0S.2006.282632

Béckmann et al. (2024). ugv_nav4d: Advanced Multi-Surface Navigation for Unmanned Ground Vehicles Using 4D Path Planning Techniques. 4
Journal of Open Source Software, 9(104), 6983. https://doi.org/10.21105/joss.06983.

https://github.com/rock-control/control-trajectory_follower
https://github.com/rock-control/control-trajectory_follower
https://github.com/rock-planning/planning-sbpl_spline_primitives
https://github.com/rock-planning/planning-sbpl_spline_primitives
https://github.com/envire/slam-maps
https://github.com/sbpl/sbpl
https://doi.org/10.1109/IROS45743.2020.9341207
https://github.com/dfki-ric/traversability_generator3d
https://github.com/dfki-ric/traversability_generator3d
https://www.dfki.de/web/technologien-anwendungen/living-labs/robotics-exploration-laboratory
https://www.dfki.de/web/technologien-anwendungen/living-labs/robotics-exploration-laboratory
https://doi.org/10.1109/IROS.2006.282632
https://doi.org/10.21105/joss.06983

	Summary
	Statement Of Need
	Software Components
	EnvironmentXYZTheta
	PathPlanner
	PreComputedMotions

	Debugging
	PlannerGui

	Field Tests
	Acknowledgements
	References

