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Summary
Probabilistic numerical solvers have emerged as an efficient framework for simulation, un-
certainty quantification, and inference in dynamical systems. In comparison to traditional
numerical methods, which approximate the true trajectory of a system only by a single point
estimate, probabilistic numerical solvers compute a distribution over the true unknown solution
of the given differential equation and thereby provide information about the numerical error
incurred during the computation. ProbNumDiffEq.jl implements such probabilistic numerical
solvers for ordinary differential equations (ODEs) and differential-algebraic equations (DAEs)
in the Julia programming language (Bezanson et al., 2017) within the DifferentialEquations.jl
ecosystem (Rackauckas & Nie, 2017).

More concretely, ProbNumDiffEq.jl provides a range of probabilistic numerical solvers for
ordinary differential equations based on Bayesian filtering and smoothing, which have emerged
as a particularly efficient and flexible class of methods for solving ODEs (Kersting, Sullivan,
et al., 2020; Schober et al., 2019; Tronarp et al., 2019). These so-called “ODE filters” have
known polynomial convergence rates (Kersting, Sullivan, et al., 2020; Tronarp et al., 2021) and
numerical stability properties (such as A-stability or L-stability) (Bosch, Hennig, et al., 2023;
Tronarp et al., 2019), their computational complexity is comparable to traditional numerical
methods (Krämer, Bosch, et al., 2022), they are applicable to a range of numerical differential
equation problems (Bosch et al., 2022; Krämer, Schmidt, et al., 2022; Krämer & Hennig, 2021),
and they can be formulated parallel-in-time (Bosch, Corenflos, et al., 2023). ODE filters also
provide a natural framework for ODE parameter inference (Beck et al., 2024; Kersting, Krämer,
et al., 2020; Schmidt et al., 2021; Tronarp et al., 2022). ProbNumDiffEq.jl implements many
of the methods referenced above and packages them in a software library with the aim to be
easy-to-use, feature-rich, well-documented, and efficiently implemented.

Statement of need
Filtering-based probabilistic numerical ODE solvers have been an active field of research for
the past decade, but their application in practical simulation and inference problems has been
limited. ProbNumDiffEq.jl aims to bridge this gap. ProbNumDiffEq.jl implements probabilistic
numerical methods as performant, documented, and easy-to-use ODE solvers inside the well-
established DifferentialEquations.jl ecosystem (Rackauckas & Nie, 2017). Thereby, the package
benefits from the extensive testing, documentation, performance optimization, and functionality
that DifferentialEquations.jl provides. Users can easily find help and examples regarding
many features that are not particular to ProbNumDiffEq.jl in the DifferentialEquations.jl
documentation, and we provide additional examples and tutorials specific to the probabilistic
solvers in the ProbNumDiffEq.jl documentation. We believe that this deep integration within
DifferentialEquations.jl is a key feature to attract users to probabilistic numerics by enabling
the use of probabilistic ODE solvers as drop-in replacements for traditional ODE solvers.
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On the other hand, ProbNumDiffEq.jl also aims to accelerate the development of new probabilis-
tic numerical ODE solvers by providing a solid foundation to both build on and compare against.
Several publications have been developed with ProbNumDiffEq.jl, including contributions on
step-size adaptation and calibration of these solvers (Bosch et al., 2021), energy-preserving
solvers and DAE solvers (Bosch et al., 2022), probabilistic exponential integrators (Bosch,
Hennig, et al., 2023), and novel parameter inference algorithms (Beck et al., 2024; Tronarp
et al., 2022). We also hope that by providing documented and performant implementations
of published algorithms, we facilitate researchers to use these methods as baselines when
developing new numerical solvers.

ProbNumDiffEq.jl is also the only software package in Julia, at the time of writing, that provides
a comprehensive set of probabilistic numerical ODE solvers. Outside of Julia, two other software
packages provide a similar functionality. ProbNum (Wenger et al., 2021) is a Python package
that implements probabilistic numerical methods for various numerical problems, including linear
systems, quadrature, and ODEs. ProbNum particularly aims to facilitate rapid experimentation
and accelerate the development of new methods (Wenger et al., 2021). It is therefore broader
in scope and provides functionality not covered by ProbNumDiffEq.jl, but it also lacks some of
the specialized ODE solvers available in ProbNumDiffEq.jl. In addition, with its reliance on
Python and NumPy (Harris et al., 2020) and the lack of just-in-time compilation, it is also
generally less performant. ProbDiffEq (Krämer, 2023) is a probabilistic numerical ODE solver
package built on JAX. At the time of writing, it provides a very similar set of ODE solvers as
ProbNumDiffEq.jl with the addition of certain filtering and smoothing methods and the lack
of certain specialized ODE solvers—but as both ProbDiffEq and ProbNumDiffEq.jl are under
active development, this might change in the future. By building on JAX and leveraging its
just-in-time compilation capabilities, ProbDiffEq provides ODE solvers with similar performance
as those implemented in ProbNumDiffEq.jl (shown through benchmarks in both packages
comparing to SciPy (Virtanen et al., 2020)). In summary, ProbNumDiffEq.jl provides one of
the most feature-rich and performant probabilistic numerical ODE solver packages currently
available and is the only one built on the Julia programming language.
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