The Journal of Open Source Software

DOI: 10.21105/joss.07059

Software
= Review &7
= Repository @
= Archive &0

Editor: Fabian-Robert Stoter 7
Reviewers:
= @xiaohk

= @paulbrodersen

Submitted: 10 June 2024
Published: 10 September 2024

License

Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0

International License (CC BY 4.0).

Jupyter Scatter: Interactive Exploration of Large-Scale
Datasets

2

Fritz Lekschas ©! and Trevor Manz

1 Ozette Technologies, Seattle, WA, USA 2 Harvard Medical School, Boston, MA, USA

Summary

Jupyter Scatter is a Python package for rendering scalable, interactive, and interlinked scat-
terplots to explore datasets in Jupyter Notebook/Lab, Colab, and VS Code (Figure 1).
Thanks to its WebGL-based rendering engine (Lekschas, 2023), Jupyter Scatter can render
and animate up to several million data points. The tool focuses on data-driven visual en-
codings and offers perceptually-effective point color and opacity settings by default. For
interactive exploration, Jupyter Scatter features two-way zoom and point selections. Fur-
thermore, it can compose multiple scatterplots and synchronize their views and selections,
which is useful for comparing datasets. Finally, Jupyter Scatter's API integrates with Pandas
DataFrames (McKinney, 2010) and Matplotlib (Hunter, 2007) and offers functional methods
that group properties by type to ease accessibility and readability. Extensive documenta-
tion and how-tos can be found at https://jupyter-scatter.dev and the code is available at
https://github.com /flekschas/jupyter-scatter.

Figure 1: Examples of Jupyter Scatter. Top row left to right: A 10M point scatterplot of the Roessler
Attractor. A connected scatterplot of the market capitalization over the last five years of the top ten
S&P500 companies according to YCharts. Five linked embedding plots of epigenomic data (Dekker et al.,
2023) that are connected to the HiGlass genome browser (Kerpedjiev et al., 2018). Bottom row left to
right: A single-cell embedding plot of tumor data (Mair et al., 2022) that was clustered and annotated
with FAUST (Greene et al., 2021, 2022). Several linked embedding plots of chromatin state datasets
(Spracklin et al., 2023). An embedding plot of news headlines (Misra, 2022) that is linked to a widget
for displaying selected articles.

Lekschas, & Manz. (2024). Jupyter Scatter: Interactive Exploration of Large-Scale Datasets. Journal of Open Source Software, 9(101), 7059. 1
https://doi.org/10.21105/joss.07059.

https://orcid.org/0000-0001-8432-4835
https://orcid.org/0000-0001-7694-5164
https://doi.org/10.21105/joss.07059
https://github.com/openjournals/joss-reviews/issues/7059
https://github.com/flekschas/jupyter-scatter/
https://doi.org/10.5281/zenodo.13391017
https://faroit.com/
https://orcid.org/0000-0002-2534-1165
https://github.com/xiaohk
https://github.com/paulbrodersen
https://creativecommons.org/licenses/by/4.0/
https://jupyter-scatter.dev
https://github.com/flekschas/jupyter-scatter
https://doi.org/10.21105/joss.07059

The Journal of Open Source Software

Usage Scenario

Jupyter Scatter simplifies the visual exploration, analysis, and comparison of large-scale
bivariate datasets. It renders up to twenty million points smoothly, supports fast point
selections, integrates with Pandas DataFrame (McKinney, 2010), uses perceptually-effective
default encodings, and offers a user-friendly API.

In the following, we demonstrate its usage for visualizing the GeoNames dataset (GeoNames,
2024), which contains data about 120k cities worldwide. For instance, to visualize cities by
their longitude/latitude and color-code them by continent (Figure 2 Left), we create a Scatter
instance as follows.

import jscatter
import pandas as pd

geonames = pd.read_parquet('https://paper.jupyter-scatter.dev/geonames.pq"')

scatter = jscatter.Scatter(
data=geonames,
x="'Longitude',
y="'Latitude',
color_by='Continent',

)

scatter.show()

h T T g

Figure 2: GeoNames Dataset of Cities Around the World.

Without specifying a color map, Jupyter Scatter uses the categorical colorblind-safe palette
from Okabe & Ito (2002) for the Continent column, which has seven unique values. For
columns with continuous data, it automatically selects Matplotlib’s (Hunter, 2007) Viridis
color palette. As shown in Figure 1 and Figure 2 Left, Jupyter Scatter dynamically adjusts the
point opacity based on the point density within the field of view. This means points become
more opaque when zooming into sparse areas and more transparent when zooming out into
an area that contains many points. The dynamic opacity addresses over-plotting issues when
zoomed out and visibility issues when zoomed in.

Jupyter Scatter offers many ways to customize the point color, size, and opacity encodings.
To simplify configuration, it provides topic-specific methods for setting up the scatterplot,
rather than requiring all properties to be set during the instantiation of Scatter. For instance,
as shown in Figure 2 Right, the point opacity (0.5), size (asinh-normalized), and color (log-
normalized population using Matplotlib’s (Hunter, 2007) Magma color palette in reverse order)
can be set using the following methods.

Lekschas, & Manz. (2024). Jupyter Scatter: Interactive Exploration of Large-Scale Datasets. Journal of Open Source Software, 9(101), 7059. 2
https://doi.org/10.21105/joss.07059.

https://doi.org/10.21105/joss.07059

The Journal of Open Source Software

from matplotlib.colors import AsinhNorm, LogNorm

scatter.opacity(0.5)

scatter.size(by='Population', map=(1, 8, 10), norm=AsinhNorm())
scatter.color(by="'Population', map='magma', norm=LogNorm(), order='reverse')

To aid interpretation of individual points and point clusters, Jupyter Scatter includes legends,
axis labels, and tooltips. These features are activated and customized via their respective
methods.

scatter.legend(True)
scatter.axes(True, labels=True)
scatter.tooltip(True, properties=['color', 'Latitude', 'Country'], preview='Name')

The tooltip can show a point's data distribution in context to the whole dataset and include
a text, image, or audio-based media preview. For instance, the example (Figure 2 Right)
shows the distribution of the visually encoded color property as well as the Latitude and
Country columns. For numerical properties, the distribution is visualized as a bar chart, and
for categorical properties the distribution is visualized as a treemap. As the media preview
we're showing the city name.

Exploring a scatterplot often involves studying subsets of the points. To select points, one can
either long press and lasso-select points interactively in the plot (Figure 3 Bottom Left) or
query-select points (Figure 2 Right) as shown below. In this example, we select all cities with
a population greater than ten million.

scatter.selection(geonames.query('Population > 10_000_000"').1index)

The selected cities can be retrieved by calling scatter.selection() without any arguments.
It returns the data record indices, which can then be used to get back the underlying data
records.

cities.iloc[scatter.selection()]

To automatically register changes to the point selection one can observe the scatter.widget.selection
traitlet. The observability of the selection traitlet (and many other properties of
scatter.widget) makes it easy to integrate Jupyter Scatter with other Jupyter Widgets.

For instance, Figure 3 (Left) shows a UMAP (Mclnnes et al., 2018) embedding of the Fashion
MNIST dataset (Xiao et al., 2017) where points represent images and the point selection is
linked to an image widget that loads the selected images.

import ipywidgets
import jscatter

fashion_mnist = pd.read_parquet('https://paper.jupyter-scatter.dev/fashion-mnist-embeddi
images = ImagesWidget() # Custom widget for displaying Fashion MNIST images

scatter = jscatter.Scatter(
data=fashion_mnist,
x="umapX",
y="umapY"',
color_by='class"',
background_color='black',
axes=False,

ipywidgets.link((scatter.widget, 'selection'), (images, 'images'))

ipywidgets.AppLayout(center=scatter.show(), right_sidebar=images)

Lekschas, & Manz. (2024). Jupyter Scatter: Interactive Exploration of Large-Scale Datasets. Journal of Open Source Software, 9(101), 7059. 3
https://doi.org/10.21105/joss.07059.

https://doi.org/10.21105/joss.07059

The Journal of Open Source Software

- A |

Figure 3: Fashion MNIST Embeddings. Left: Integration of Jupyter Scatter with an image widget
through synchronized point selections. Right: Four scatterplots with synchronized point selection.

Comparing two or more related scatterplots can be useful in various scenarios. For example,
with high-dimensional data, it might be necessary to compare different properties of the same
data points. Another scenario involves embedding the high-dimensional dataset and comparing
different embedding methods. For large-scale datasets, it might be useful to compare different
subsets of the same dataset or entirely different datasets. Jupyter Scatter supports these
comparisons with synchronized hover, view, and point selections via its compose method.

For instance, there are many ways to embed points into two dimensions, including linear and
non-linear methods, and comparing point clusters between different embedding methods can be
insightful. In the following, we compose a two-by-two grid of four embeddings of the Fashion
MNIST dataset (Xiao et al., 2017) created with PCA (Pearson, 1901), UMAP (Mclnnes et
al., 2018), t-SNE (Maaten & Hinton, 2008), and a convolutional autoencoder (Kingma &
Welling, 2013). As illustrated in Figure 3 (Right), the point selection of the four scatterplots
is synchronized.

config = dict(
data=fashion_mnist,
color_by='class',
legend=True,
axes=False,
zoom_on_selection=True,

pca = jscatter.Scatter(x='pcaX', y='pca¥Y', **config)
tsne = jscatter.Scatter(x='tsnexX', y='tsneY', **config)
umap = jscatter.Scatter(x="'umapX', y='umapY', **config)
cae = jscatter.Scatter(x='caeX', y='caeY',6 **config)

jscatter.compose(
[(pca, "PCA"), (tsne, "t-SNE"), (umap, "UMAP"), (cae, "CAE")],
sync_selection=True,
sync_hover=True,
rows=2,

)

Note, by setting zoom_on_selection to True and synchronizing selections, selecting points in
one scatter will automatically select and zoom in on those points in all scatters.

Lekschas, & Manz. (2024). Jupyter Scatter: Interactive Exploration of Large-Scale Datasets. Journal of Open Source Software, 9(101), 7059. 4
https://doi.org/10.21105/joss.07059.

https://doi.org/10.21105/joss.07059

The Journal of Open Source Software

Statement of Need

Jupyter Scatter is primarily a tool for data scientists to visually explore and compare bivariate
datasets. Its ability for two-way point selections and synchronized plots, enable interactive
exploration and comparison in ways that is not possible with existing widgets (e.g., multiple
linked scatterplots) or requires considerable effort to set up (e.g., two-way communication of
point selections).

Further, due to its usage of traitlets (IPython development team, 2024), Jupyter Scatter
integrates easily with other widgets, which enables visualization researchers and practitioners
to build domain-specific applications on top of Jupyter Scatter. For instance, the Comparative
Embedding Visualization widget (Manz, Lekschas, et al., 2024) uses Jupyter Scatter to display
four synchronized scatterplots for guided comparison of embedding visualizations. Andrés
Colubri's research group is actively working on a new version of their Single Cell Interactive
Viewer which will be based on Jupyter Scatter.

Implementation

Jupyter Scatter has two main components: a Python program running in the Jupyter kernel
and a front-end program for interactive visualization. The Python program includes a widget
and an API layer. The widget defines the view model for drawing scatterplots, while the API
layer simplifies defining the view model state, integrating with Pandas DataFrames (McKinney,
2010) and Matplotlib (Hunter, 2007). The front-end program is built on top of regl-scatterplot
(Lekschas, 2023), a high-performance rendering library based on WebGL, ensuring efficient
GPU-accelerated rendering.

All components are integrated using anywidget (Manz, Abdennur, et al., 2024) to create
a cross-platform Jupyter widget compatible with various environments, including Jupyter,
JupyterLab, Google Colab, VS Code, and dashboarding frameworks like Shiny for Python,
Solara, and Panel. The Python program uses anywidget and ipywidgets (Jupyter widgets
community, 2015) to communicate with the front end, using binary data support to efficiently
send in-memory data to the GPU, avoiding the overhead of JSON serialization. This approach
enables the transfer of millions of data points from the Python kernel to the front end with
minimal latency. Bidirectional communication ensures the visualization state is shared between
the front-end and kernel, allowing updates to scatterplot properties and access to states like
selections. Coordination is managed using anywidget APls, enabling connections to other
ipywidgets like sliders, dropdowns, and buttons for custom interactive data exploration widgets.

Related Work

There are many Python packages for rendering scatterplots in notebook-like environments.
General-purpose visualization libraries like Matplotlib (Hunter, 2007), Bokeh (Bokeh develop-
ment team, 2018), or Altair (VanderPlas et al., 2018) offer great customizability but do not
scale to millions of points. They also don't offer bespoke features for exploring scatterplots
and require manual configuration.

More bespoke dataset-centric plotting libraries like Seaborn (Waskom, 2021) or pyobsplot
(Barnier, 2024) require less configuration and make it easier to create visually-pleasing scatter-
plots but they still fall short in terms of scalability.

Plotly combines great customizability with interactivity and can render scatterplots of up to a
million points. However, drawing many more points is challenging and the library also focuses
more on generality than dedicated features for scatterplot exploration and comparison. Plotly's
WebGL rendering mode is also bound to the number of WebGL contexts your browser supports
(typically between 8 to 16) meaning that it can't render more than 8 to 16 plots when using

Lekschas, & Manz. (2024). Jupyter Scatter: Interactive Exploration of Large-Scale Datasets. Journal of Open Source Software, 9(101), 7059. 5
https://doi.org/10.21105/joss.07059.

https://co-labo.org/
https://co-labo.org/
https://doi.org/10.21105/joss.07059

The Journal of Open Source Software

the WebGL render mode. Jupyter Scatter does not have this limitation as it uses a single
WebGL renderer for all instantiated widgets, which is sufficient as static figures don’t need
constant re-rendering and one will ever only interact with a single or few plots at a time. Being
able to render more than 8 to 16 plots can be essential in notebook environments as these are
often used for exploratory data analysis.

Datashader (Anaconda developers and community contributors, 2024) specializes in the static
rendering of large-scale datasets and offers unparalleled scalability that greatly exceeds that
of Jupyter Scatter. One can also fine-tune how data is aggregated and rasterized. However,
this comes at the cost of limited interactivity. While it's possible to interactively zoom into a
rasterized image produced by Datashader, the image is just drawn at scale instead of being
re-rendered at different fields of view. Re-rendering can be important though to better identify
patterns in subsets of large scatterplots through optimized point size and opacity.

Although Jupyter Scatter is not tied to any specific application area and works with any
bivariate data, one common use case is to plot 2D embeddings. In this context, Embedding
Projector (Smilkov et al., 2016), WizMap (Wang et al., 2023), and DataMapPlot [datamapplot]
are alternatives to Jupyter Scatter that run in Jupyter Notebook/Lab and can scale to millions
of points. The Embedding Projector can visualize 2D and 3D scatter plots but is tightly
coupled with TensorFlow's TensorBoard. WizMap and DataMapPlot work with any bivariate
data and offer additional specialized features like displaying labels and cluster outlines/contours.
However, unlike Jupyter Scatter, WizMap offers only a fixed visual encoding optimized for
embeddings, meaning that point color, size, and opacity cannot be adjusted. Additionally,
both WizMap and DataMapPlot output static HTML only, which means they do not integrate
into the Jupyter Widget ecosystem. For example, while Jupyter Scatter does not have built-in
search functionality, it can be easily implemented using the existing Jupyter Text Widget in
combination with Jupyter Scatter's two-way point selections’.

Finally, except for Plotly, none of the tools offer readily available interactive two-way point
selection that exposes the selected points for reading and writing in both the Python and
JavaScript kernels. This is a key feature of Jupyter Scatter to enable follow-up analysis of
subsets of the data. Also, no other library offers direct support for synchronized exploration of
multiple scatterplots for comparison.

Acknowledgements

We acknowledge and appreciate contributions from Pablo Garcia-Nieto, Sehi L'Yi, Kurt McKee,
and Dan Rosén. We also thank Nezar Abdennur for his feedback on the initial API design.

References

Anaconda developers and community contributors. (2024). Datashader: Accurately render
even the largest data. https://github.com/holoviz/datashader

Barnier, J. (2024). Observable Plot in Jupyter notebooks and Quarto documents. https:
//github.com/juba/pyobsplot

Bokeh development team. (2018). Bokeh: Python library for interactive visualization. https:
//bokeh.pydata.org/en/latest/

Dekker, J., Alber, F., Aufmkolk, S., Beliveau, B. J., Bruneau, B. G., Belmont, A. S., Bintu, L.,
Boettiger, A., Calandrelli, R., Disteche, C. M., & others. (2023). Spatial and temporal
organization of the genome: Current state and future aims of the 4D nucleome project.
Molecular Cell. https://doi.org/10.1016/j.molcel.2023.06.018

thttps://github.com /flekschas/jupyter-scatter-tutorial /blob/main /notebooks/5-Search.ipynb

Lekschas, & Manz. (2024). Jupyter Scatter: Interactive Exploration of Large-Scale Datasets. Journal of Open Source Software, 9(101), 7059. 6
https://doi.org/10.21105/joss.07059.

https://ipywidgets.readthedocs.io/en/latest/
https://github.com/holoviz/datashader
https://github.com/juba/pyobsplot
https://github.com/juba/pyobsplot
https://bokeh.pydata.org/en/latest/
https://bokeh.pydata.org/en/latest/
https://doi.org/10.1016/j.molcel.2023.06.018
https://github.com/flekschas/jupyter-scatter-tutorial/blob/main/notebooks/5-Search.ipynb
https://doi.org/10.21105/joss.07059

SS

The Journal of Open Source Software

GeoNames. (2024). GeoNames. https://www.geonames.org

Greene, E., Finak, G., D'Amico, L. A., Bhardwaj, N., Church, C. D., Morishima, C., Ramchurren,
N., Taube, J. M., Nghiem, P. T., Cheever, M. A., & others. (2021). New interpretable
machine-learning method for single-cell data reveals correlates of clinical response to cancer
immunotherapy. Patterns, 2(12). https://doi.org/10.1016/j.patter.2021.100372

Greene, E., Finak, G., Lekschas, F., Smith, M., D'Amico, L. A., Bhardwaj, N., Church, C. D.,
Morishima, C., Ramchurren, N., Taube, J. M., Nghiem, P. T., Cheever, M. A., Fling, S.
P., & Gottardo, R. (2022). Data Transformations for Effective Visualization of Single-Cell
Embeddings (Version 1.0.0). https://doi.org/10.5281/zenodo.7522322

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &
Engineering, 9(3), 90-95. https://doi.org/10.1109/MCSE.2007.55

IPython development team. (2024). Traitlets: A lightweight Traits like module. https:
//github.com /ipython /traitlets

Jupyter widgets community. (2015). Ipywidgets: Interactive widgets for the jupyter notebook.
https://github.com/jupyter-widgets/ipywidgets

Kerpedjiev, P., Abdennur, N., Lekschas, F., McCallum, C., Dinkla, K., Strobelt, H., Luber,
J. M., Ouellette, S. B., Azhir, A., Kumar, N., & others. (2018). HiGlass: Web-based
visual exploration and analysis of genome interaction maps. Genome Biology, 19, 1-12.
https://doi.org/10.1186/s13059-018-1486-1

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational Bayes. https://doi.org/10.
48550/ARXIV.1312.6114

Lekschas, F. (2023). Regl-Scatterplot: A Scalable Interactive JavaScript-based Scatter Plot
Library. Journal of Open Source Software, 8(84), 5275. https://doi.org/10.21105/joss.
05275

Maaten, L. van der, & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(86), 2579-2605. http://jmlr.org/papers/v9/vandermaaten08a.html

Mair, F., Erickson, J. R., Frutoso, M., Konecny, A. J., Greene, E., Voillet, V., Maurice,
N. J., Rongvaux, A., Dixon, D., Barber, B., & others. (2022). Extricating human
tumour immune alterations from tissue inflammation. Nature, 605(7911), 728-735. https:
//doi.org/10.1038/s41586-022-04718-w

Manz, T., Abdennur, N., & Gehlenborg, N. (2024). Anywidget: Reusable widgets for interactive
analysis and visualization in computational notebooks. https://doi.org/10.31219/0sf.io/
twOsg

Manz, T., Lekschas, F., Greene, E., Finak, G., & Gehlenborg, N. (2024). A general framework
for comparing embedding visualizations across class-label hierarchies. https://doi.org/10.
31219/osf.io/puxnf

Mclnnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform manifold approximation and
projection for dimension reduction. https://doi.org/10.48550/ARXIV.1802.03426

McKinney, Wes. (2010). Data Structures for Statistical Computing in Python. Pro-
ceedings of the 9th Python in Science Conference, 56—61. https://doi.org/10.25080/
Majora-92bf1922-00a

Misra, R. (2022). News category dataset. https://doi.org/10.48550/arXiv.2209.11429

Okabe, M., & Ito, K. (2002). How to make figures and presentations that are friendly to color
blind people. https://jfly.uni-koeln.de/color/

Pearson, K. (1901). On lines and planes of closest fit to systems of points is space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11),

Lekschas, & Manz. (2024). Jupyter Scatter: Interactive Exploration of Large-Scale Datasets. Journal of Open Source Software, 9(101), 7059. 7
https://doi.org/10.21105/joss.07059.

https://www.geonames.org
https://doi.org/10.1016/j.patter.2021.100372
https://doi.org/10.5281/zenodo.7522322
https://doi.org/10.1109/MCSE.2007.55
https://github.com/ipython/traitlets
https://github.com/ipython/traitlets
https://github.com/jupyter-widgets/ipywidgets
https://doi.org/10.1186/s13059-018-1486-1
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.21105/joss.05275
https://doi.org/10.21105/joss.05275
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1038/s41586-022-04718-w
https://doi.org/10.1038/s41586-022-04718-w
https://doi.org/10.31219/osf.io/tw9sg
https://doi.org/10.31219/osf.io/tw9sg
https://doi.org/10.31219/osf.io/puxnf
https://doi.org/10.31219/osf.io/puxnf
https://doi.org/10.48550/ARXIV.1802.03426
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.48550/arXiv.2209.11429
https://jfly.uni-koeln.de/color/
https://doi.org/10.21105/joss.07059

SS

The Journal of Open Source Software

559-572. https://doi.org/10.1080/14786440109462720

Smilkov, D., Thorat, N., Nicholson, C., Reif, E., Viégas, F. B., & Wattenberg, M. (2016).
Embedding projector: Interactive visualization and interpretation of embeddings. https:
//doi.org/10.48550/arXiv.1611.05469

Spracklin, G., Abdennur, N., Imakaev, M., Chowdhury, N., Pradhan, S., Mirny, L. A, &
Dekker, J. (2023). Diverse silent chromatin states modulate genome compartmentalization
and loop extrusion barriers. Nature Structural & Molecular Biology, 30(1), 38-51. https:
//doi.org/10.1038/s41594-022-00892-7

VanderPlas, J., Granger, B., Heer, J., Moritz, D., Wongsuphasawat, K., Satyanarayan, A.,
Lees, E., Timofeev, |., Welsh, B., & Sievert, S. (2018). Altair: Interactive statistical
visualizations for Python. Journal of Open Source Software, 3(32), 1057. https://doi.org/
10.21105/joss.01057

Wang, Z. J., Hohman, F., & Chau, D. H. (2023). WizMap: Scalable Interactive Visualization
for Exploring Large Machine Learning Embeddings. arXiv 2306.09328. https://doi.org/10.
48550/arXiv.2306.09328

Waskom, M. L. (2021). Seaborn: Statistical data visualization. Journal of Open Source
Software, 6(60), 3021. https://doi.org/10.21105/joss.03021

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: A novel image dataset for
benchmarking machine learning algorithms. https://doi.org/10.48550/arXiv.1708.07747

Lekschas, & Manz. (2024). Jupyter Scatter: Interactive Exploration of Large-Scale Datasets. Journal of Open Source Software, 9(101), 7059. 8
https://doi.org/10.21105/joss.07059.

https://doi.org/10.1080/14786440109462720
https://doi.org/10.48550/arXiv.1611.05469
https://doi.org/10.48550/arXiv.1611.05469
https://doi.org/10.1038/s41594-022-00892-7
https://doi.org/10.1038/s41594-022-00892-7
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01057
https://doi.org/10.48550/arXiv.2306.09328
https://doi.org/10.48550/arXiv.2306.09328
https://doi.org/10.21105/joss.03021
https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.21105/joss.07059

	Summary
	Usage Scenario
	Statement of Need
	Implementation
	Related Work
	Acknowledgements
	References

