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Abstract

A vast majority of bioinformatics tools dedicated to the treatment of raw sequencing data
heavily use the concept of k-mers, which are words of length k. This enables us to reduce
the redundancy of data (and thus the memory pressure), to discard sequencing errors, and to
dispose of objects of fixed size that can be easily manipulated and compared to each other. A
drawback is that the link between each k-mer and the original set of sequences to which it
belongs is lost. Given the volume of data considered in this context, recovering this association
is costly. In this work, we present “back_to_sequences”, a simple tool designed to index a set
of k-mers of interest and to stream a set of sequences, extracting those containing at least
one of the indexed k-mer. In addition, the occurrence positions of k-mers in the sequences
can be provided. Our results show that back_to_sequences streams = 200 short reads per
millisecond, allowing to search k-mers in hundreds of millions of reads in a matter of a few
minutes.

Statement of Need

In the 2010s, following the emergence of next-generation sequencing technology, read assembly
strategies based on the overlap-layout-consensus paradigm (OLC) were unable to scale to
tens of millions of reads or more, prompting the usage of the de Bruijn graph (dBG) data
structure (Flicek & Birney, 2009; Schatz et al., 2010). The success of dBG was due to the fact
that the main difficulties associated with the nature of the sequencing data (read redundancy,
nonuniform coverage and nonuniform overlap between reads, sequencing errors, unknown
sequencing strand) were complex to handle with OLC while being easy to handle or simply
solved with the dBG approach (Li et al., 2012).

Recall that in the dBG assembly approach, 1. All k-mers (words oflength k) from a set of
reads are counted; 2. Those with an abundance lower than a threshold are considered to
contain sequencing errors and are discarded; 3. The remaining k-mers are organized in a
dBG; 4. The paths of the dBG form the basis of the assembly, later improved thanks to
scaffolding tools (Huson et al., 2002) such as the tools provided, for instance, by the Spades
assembler (Bankevich et al., 2012).

The usefulness of k-mers did not end with their use in dBGs. A large and redundant set of
sequences, such as a sequencing read set, can be summarized by its set of k-mers. Among
multiple fundamental tasks, this has been the basis for metagenome comparisons (Benoit et
al., 2016), for taxonomy characterization (Wood et al., 2019), for indexing purposes (Cracco
& Tomescu, 2023; Lemane, Medvedev, et al., 2022), for genotyping (Grytten et al., 2022), for
species identification (Sarmashghi et al., 2019), for transcript expression estimation (Zhang &
Wang, 2014), or for variant discovery (Uricaru et al., 2015) to cite only a few examples.
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One of the keys to the success of the use of k-mers is its low resource needs. Whatever
the sequencing coverage, once filtered, the number of distinct k-mers is at most equal to
the original genome size. This offers a minimal impact on random access memory (RAM)
and/or disk needs. However, this comes at the cost of losing the link between each k-mer and
the sequence(s) from which it originates. Storing these links explicitly would reintroduce the
problem associated with the abundance of original reads, as the link between each original
read and each of its k-mers would have to be stored. For instance, considering k-mers from a
sequencing experiment of a human genome (= 3 billion nucleotides) with a coverage of 50x
(each k-mer occurs on average in 50 distinct reads) would require more than 2TB of space
considering 64 bits for storing each link and 64 bits for storing the associated read identifier.
This is not acceptable.

There are many situations in which finding the origin of k-mers from a set in a set of reads
is informative. For instance, this is the case in studies in which the output is composed of
k-mers associated with biological knowledge such as biological variants (Uricaru et al., 2015),
or k-mers specific to a phenotypic trait (Lemane, Chikhi, et al., 2022). This approach can also
be used for quality control (Plaza Onate et al., 2015) or contamination removal (Gonzalez et
al., 2023) for instance.

Recovering the link between a k-mer and each original read in which it occurs can be
performed by indexing the reads (Marchet et al., 2020) which is too costly for hundreds of
millions reads. One may also apply grep-like evolved pattern matching approaches such as
pt (Monochromegane, 2018). However, even though they have been highly optimized in
recent decades, these approaches cannot efficiently detect thousands of k-mers in millions of
reads. The approaches that use k-mers for genotyping such as kage (Grytten et al., 2022) may
find the number of occurrences of k-mers but do not extract the sequences from which they
originate.

In this context, we propose back_to_sequences, a tool specifically dedicated to extracting
from &, a set of sequences (e.g. reads), those that contain some of the k-mers from a set X
given as input. The occurrence positions of k-mers in each sequence of the queried set & can
also be output.

Possible Alternatives

To the best of our knowledge, there exists no tool specifically dedicated to this task, while
indexing the set of k-mers X .

Genotypers as kage (Grytten et al., 2022), using kmer mapper (Ivar Grytten, 2020), provide a
way to count the number of occurrences of each k-mer from a set of reference k-mers in a
read file. However, they do not offer a feature for extracting reads that contain any reference
k-mer.

Finding one unique k-mer of interest in a set of sequences can be done using the classical grep
or more recent pattern-matching tools such as " The Platinum Searcher” (Monochromegane,
2018) or " The Silver Searcher” (Greer, 2020).

As for testing, we queried one k-mer (with & = 31) in a dataset composed of 100 million
sequences, each of length 100 nucleotides (see the documentation for details), using these
three tools.

= grep required 44 seconds. Thus, by simple extrapolation, searching for one million
k-mers on a single computer would require approximately 500 days, to be compared to
less than a minute using back_to_sequences.

= pt (The Platinum Searcher) required 15 seconds, which can be extrapolated to approxi-
mately 175 days if searching for one million k-mers.

= ag (The Silver Searcher) did not finish after 400 seconds.
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Summing up, we find these alternative tools are not appropriate for querying numerous patterns
at the same time and do not scale to large problem instances.

Note also that these alternative tools are not specialized for genomic data in which one is
interested in searching for a k-mer and potentially its reverse complement. Finally, these tools
do not easily provide the number of occurrences or occurrence positions of each of the searched
patterns when there are many.

Conclusion

We believe that back_to_sequences is a generic and handy tool that will be beneficial for
building pipelines that require manipulating k-mers and recovering the sequences from which
they originate and/or counting their number of occurrences in a set of genomic sequences.
We also believe that back_to_sequences will have other straightforward applications, in such
areas as quality control, contamination removal, or genotyping known pieces of sequences in
raw sequencing datasets. Because of the efficiency of our approach, such applications could be
executed in real time during the sequencing process.
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